
THE SELF-DUALITY EQUATIONS
ON A RIEMANN SURFACE

N. J. HITCHIN

[Received 15 September 1986]

Introduction

In this paper we shall study a special class of solutions of the self-dual Yang-Mills
equations. The original self-duality equations which arose in mathematical physics
were defined on Euclidean 4-space. The physically relevant solutions were the
ones with finite action—the so-called 'instantons'. The same equations may be
dimensionally reduced to Euclidean 3-space by imposing invariance under
translation in one direction. These equations also have physical relevance—the
solutions which have finite action in three dimensions are the 'magnetic
monopoles'. If we take the reduction process one step further and consider
solutions which are invariant under two translations, we obtain a set of equations
in the plane. Here, however, there is no clear physical meaning and, indeed,
attempts to find finite action solutions have failed. Nevertheless, these are the
equations we shall consider.

Despite the lack of interesting solutions in U2, the equations have the
important property—conformal invariance—which allows them to be defined on
manifolds modelled on U2 by conformal maps, namely Riemann surfaces. We
shall consider here solutions of the self-duality equations defined on a compact
Riemann surface. There are in fact solutions, as we shall show, and the moduli
space of all solutions turns out to be a manifold with an extremely rich geometric
structure which will be the focus of our study. It brings together in a harmonious
way the subjects of Riemannian geometry, topology, algebraic geometry, and
symplectic geometry. Illuminating all these facets of the same object accounts for
the length of this paper.

The self-duality equations are equations from gauge theory; geometrically they
are defined in terms of connections on principal bundles. While the group of the
principal bundle may be chosen arbitrarily for the equations to make sense, we
restrict attention here to the simplest case of SU(2) or SO(3). There are two
reasons for this. The first, and most obvious, is that it simplifies calculations and
avoids the use of inductive processes which are inherent in the consideration of a
general Lie group of higher rank. The second reason is that solutions for SU(2)
have an intimate relationship with the internal structure of the Riemann surface.
As a consequence of results we shall prove about solutions to the self-duality
equations, we learn something about the moduli space of complex structures on
the surface itself, namely Teichmiiller space.

A.M.S. (1980) subject classification: 32 G 13.
Proc. London Math. Soc. (3) 55 (1987) 59-126.
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The equations we consider relate a pair of objects: a connection A on a
principal G-bundle P over the Riemann surface M, and a Higgs field $>. The field
3> is a (l,0)-form on M with values in the (complex) Lie algebra bundle of P.
They may be written as

F(A) + [0>, O*] = 0.

The first equation says that <I> is holomorphic, and the second is a unitary
constraint on the pair.

In the case of G = SU(2) or SO(3) a solution to the equations defines a
holomorphic rank-2 vector bundle V over M, together with a holomorphic section
O of End V <8> K, where K is the canonical bundle of M.

In the first section of the paper we briefly describe the equations and their
origin and give examples of solutions, in particular a solution corresponding to a
metric of constant negative curvature on the surface. Next, in § 2, we prove a
vanishing theorem related to solutions of (*). This uses the standard Weitzenbock
technique to show that certain holomorphic sections of vector bundles must
necessarily be zero in the presence of a solution to the equations. It imposes in
particular a constraint on the holomorphic structure of the pair (V, <&) which we
call stability. Recall that a vector bundle V is defined to be stable if the degree of
any subbundle is less than half the degree of V. Our definition of stability for the
pair (V, $>), where <J> is a holomorphic section of End V <S> K, is that any
^-invariant subbundle must have degree less than half the degree of V. The
vanishing theorem shows that a pair arising from a solution of the self-duality
equations is necessarily stable.

In § 3 we study this notion of stability from an algebro-geometric point of view
concentrating on the question of which vector bundles may occur in a stable pair
(V, <1>). These bundles are classified in terms of their Harder-Narasimhan
stratification, but may be more uniformly characterized as those bundles for
which a Zariski open set of holomorphic Higgs fields leave invariant no proper
subbundle whatsoever. We then consider explicitly the stable pairs for surfaces of
low genus: for genus 0 and 1 there are essentially no stable pairs, but for genus 2
we list them. The list is, however, simply a description of individual strata and
gives no indication of how they fit together to form a moduli space, which is our
main goal.

Having seen that a solution to the self-duality equations gives rise to a stable
pair, we prove in § 4 the converse: to each stable pair there exists a solution of
the self-duality equations unique modulo unitary gauge transformations. This is a
generalization of the theorem of Narasimhan and Seshadri that a stable bundle
admits a canonical flat unitary connection. In fact, setting 0 = 0, we obtain their
theorem (in the case of rank 2) as a corollary. The proof is modelled on
Donaldson's proof of the theorem of Narasimhan and Seshadri. It is an analytical
one and makes essential use of Uhlenbeck's weak compactness theorem, one of
the most effective tools of gauge theory. Again, like Donaldson's approach, the
idea of the proof involves moment maps and symplectic geometry in an
infinite-dimensional context. One other corollary of the theorem is the unifor-
mization theorem: every compact Riemann surface of genus g 2= 2 admits a metric
of constant negative curvature.
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The results of §§ 3 and 4 together provide the basis for the rest of the paper.
On the one hand, we may use the analysis of § 4 to construct a moduli space for
solutions of the self-duality equations and analyse its differential geometric
structure, on the other the algebraic geometry of §3 provides an explicit
description of special subspaces and allows us to build up information about the
topology and global geometry of the space.

In §5 we construct the moduli space analytically. The methods are by now
quite familiar, having been used in many situations. These involve a vanishing
theorem, the Atiyah-Singer index theorem, and Banach space implicit function
theorems. The result is that if V is a bundle of odd degree (or equivalently the
solution to the self-duality equations is defined on a principal SO(3) bundle with
non-zero second Stiefel-Whitney class) then the moduli space of all solutions
modulo gauge transformations is a smooth manifold M of dimension 12(g - 1 )
where g is the genus of the Riemann surface.

More recent studies of questions in gauge theory have concentrated not only on
the existence and dimension of the moduli space of solutions, but also on the
natural Riemannian metric which it carries. The case of magnetic monopoles is
one example. In §6 we study the natural metric on M. We show first of all
that it is complete (a consequence again of Uhlenbeck's theorem) and secondly
that it is a hyperkdhler metric. This fact is basically a consequence of the structure
of the self-duality equations themselves and is due to the fact that, formally
speaking, the moduli space M is a hyperkahler quotient in the sense of [18].

A hyperkahler metric is one which is Kahlerian with respect to complex
structures /, / , and K which satisfy the algebraic relations of the quaternions i, ;,
k. Its existence means that M has many complex structures. The explicit
knowledge of M contained in § 3 when we consider it as the space of equivalence
classes of stable pairs describes just one of these structures. As we shall see later,
however, holomorphic information about one complex structure yields non-
holomorphic information about others.

In § 7 we study the global topology of M. We show that it is non-compact,
connected, and simply-connected and we compute its Betti numbers. To do this
we make use of both the differential geometry of § 6 and the algebraic geometry
of §3. We consider the circle action (A, <P)^>(A, eie<&) which preserves the
self-duality equations and so induces a circle action on M. This is a group of
isometries of the natural metric and preserves the complex structure of M which
corresponds to the equivalence classes of stable pairs (V, <£). We then use a
method due to Frankel to compute the Betti numbers. The moment map of the
circle action with respect to the Kahler form is a perfect Morse function, and
hence a study of its critical points, the fixed point sets of the group action,
produces formulae for the Betti numbers. The fixed points are analysed by
considering the stable pairs (V, <$) which are fixed (up to equivalence) by the
circle action, and these can be explicitly described in terms of symmetric products
of the Riemann surface. The final formula (7.6) for the Poincare" polynomial is
quite complicated.

If we fix one complex structure of a hyperkahler manifold, then there is a
holomorphic (in fact covariant constant) symplectic form. Thus the manifold M,
considered as the moduli space of stable pairs, is in a holomorphic manner a
symplectic manifold. We consider it from this point of view in § 8 and show that it
may be regarded as an algebraically completely integrable Hamiltonian system.
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More specifically we consider the map det: M^>H°(M ,K2) from the (6g-6)-
dimensional complex manifold M to the (3g - 3)-dimensional space of quadratic
differentials defined by taking the determinant of the Higgs field O. The
analytical estimates of § 4 show that this map is proper and general arguments
prove that the 3g — 3 functions which define this map actually commute with
respect to the Poisson bracket on M. From the general point of view of symplectic
geometry one expects the generic fibre of the map det to be a compact complex
torus. However, in this case we can prove this directly and show that the fibre
over a quadratic differential with simple zeros is the Prym variety of a double
covering of M branched over those zeros.

We may go further in studying the symplectic manifold M. It contains as an
open dense set the cotangent bundle of the moduli space Jf of stable bundles,
with its natural symplectic structure. The fibres of the function det restricted to
T*Jf are non-compact Lagrangian submanifolds (whose compactification in fact
generates M), and we may consider the 'caustics' produced by these: the
singularities of the projection onto X. This locus turns out to be the intersection
of the theta-divisor of the double covering of M with the Prym variety.

Up to this point we have concentrated on only one complex structure of the
hyperkahler family. In §9 we consider the others. We show that they are all
equivalent and give M the structure of a Stein manifold. This is unlike the
previous complex structure of M, which has compact complex submanifolds.

Adopting the point of view determined by this complex structure on M we
consider the map

(A, <P)^>A + <P + <P*

which associates a complex connection to the pair (A, O). If the self-duality
equations for (A, O) are satisfied, this connection is flat. Moreover, a vanishing
theorem shows that it is irreducible if the solution to the self-duality equations is
irreducible.

There is a parallel here with the development of the theory of stable pairs in the
first three sections. The analogue of § 4 showing that every stable pair arises from
a solution of the self-duality equations is the statement that every irreducible flat
connection is gauge-equivalent to a connection of the form (A + <E> + O*) for a
solution of the self-duality equations. This is indeed true, and is proved by
Donaldson in the paper following this. An immediate consequence is that the
formula of § 7 for the Betti numbers of the moduli space yields the Betti numbers
of a component of the space of irreducible representations of the universal central
extension of JT^M) in SL(2, C).

In § 10 we consider one of the bizarre consequences of the existence of a
hyperkahler metric on M. The involution induced by (A, <I>)—>(A, — <I>) is
holomorphic with respect to the complex structure of stable pairs, but anti-
holomorphic with respect to one of the other complex structures. It therefore
defines a real structure on M with its Stein manifold complex structure. The map
to flat connections described above maps the fixed point sets of the involution
onto moduli spaces of real flat connections. Using the explicit knowledge of stable
pairs of § 3 we compute those fixed point sets and thus determine information
about spaces of flat connections. As a consequence of Donaldson's theorem there
is a completely explicit description of the topology of these spaces: the moduli
space of flat PSL(2, U) connections whose associated UP1 bundle has Euler class
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k is diffeomorphic to a complex vector bundle of rank g -1 + k over the
symmetric product S2s~2~kM.

The final section deals with one component of the fixed point set of this
involution: the one which corresponds to flat bundles of Euler class (2g - 2). In
the holomorphic description this is the complex vector space H°(M; K2) of
quadratic differentials. The self-duality equations (*) lead in this case to the
equation F = -2(1 - \\q\\2)(o where F is the curvature form of the Kahler metric
co and q is a quadratic differential. (This is formally very similar to the abelian
vortex equation in mathematical physics.) The existence theorem of § 4 shows
that for any q there is a unique solution. We then show that

ft = q + (co + qq/co) + q

is a metric of constant negative curvature - 4 . Conversely, using the theorem of
Earle and Eells in harmonic maps we see that any metric of constant curvature is
isometric to one of this form. We thus have a natural diffeomorphism from
£3g-3 _ fjo^M . ̂ ^ tQ Xeichmiiller space, providing a new description of it. It
inherits from the hyperkahler metric of the moduli space a complete Kahler
metric with a circle action. Neither the complex structure nor the metric structure
are those one normally associates with Teichmiiller space. This is not surprising
as our description has a distinguished base point, the origin in H°(M ; K2). It is
more like an exponential map for Teichmiiller space. Nevertheless we show
finally that the Kahler form of our metric is the Weil-Petersson symplectic form
so that symplectically the two models coincide.

What this paper attempts to do is to give a description of the moduli space of
solutions to the self-duality equations and to show the interesting mathematics
which is embedded in it. We have not tried to solve explicitly the equations,
relying instead on the existence theorem of § 4. Other forms of the self-duality
equations have, however, been solved by twistor means and it remains a
possibility that this two-dimensional version may also yield to such techniques.
We hope to return to this problem in a future paper.

The author wishes to thank S. K. Donaldson and J. Hurtubise for useful
discussions.

1. Self-duality

Let A be a connection on a principal G-bundle P over IR4, and F(A) its
curvature. We write

for the vector bundle associated to the adjoint representation, and

Q*(U4; ad(P))

for the differential forms with values in ad(P). Then the curvature F(A) e
Q2(1R4 ; ad(P)) is a 2-form with values in ad(P).

A connection is said to satisfy the self-dual Yang-Mills equations, or
self-duality equations for short, if F(A) is invariant under the Hodge star
operator:

*: Q2([R4;ad(P))-*Q2(IR4;ad(P)).
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In terms of a trivialization of P over R4, and the basic coordinates {xx, x2, x3, x4),
F(A) may be written as a Lie algebra-valued 2-form

and the self-duality equations then take the form

F\2
=

[ (1.1)

With respect to this trivialization, the connection is described by a Lie
algebra-valued 1-form

A = Ax dxi + A2 dx2 + A3 dx3 + A4 dx4

and the curvature is then expressed as

Alternatively, introducing the covariant derivative

V,= — + Ahdx

&t,

we now make the assumption that the Lie algebra-valued functions At are
independent of x3 and x4 and hence define functions of (xu x2) e U2. Thus Ax and
A2 define a connection

A =Ai dxi +A2dx2

over U2, and A3 and A4 which we relabel as <t>x and <p2 are auxiliary fields over U2

(usually called Higgs fields) which are Lie algebra valued.
The self-duality equations (1.1) may now be written as

Fu = [VU<I>2] = [V2, (!>,] = F23.

Introducing the complex Higgs field 0 = <px - i(f>2 we obtain the two equations

\ + *'V2, <t>] = 0. J ( L 2 )

We assume here that G is the compact real form of a complex Lie group and * is
the corresponding anti-involution on the complex Lie algebra. Alternatively, * is
the adjoint under some unitary representation.

From a more invariant viewpoint, the equations we have described are the
solutions to the self-dual Yang-Mills equations on R4 which are invariant under
the translation action of the additive group U2:

(au a2). (xlt x2, x3, x4) = (xu x2, x3 + aux4 + a2).
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The two Higgs fields are then defined by

0 2 = ^4 — ^3/dXA,

the difference of the covariant derivative and Lie derivative.
From the point of view of the induced connection on the principal bundle P

over U2,
F € Q2(R2 ; ad(P)) and <p e Q°(R2 ;ad(P)<g> C);

thus the first of the equations (1.2) is coordinate dependent. However, if we write
z =x1 + ix2 and introduce

O = \<t> dz e Qh0(U2 ; ad(P) <g> C)
and

<*>* = \<t>* dz e Q 0 ' 1 ^ 2 ; ad(P) ® C)

then the equations become

dW = 0,

where [O, <!>*] = 3>O* + O*O is the usual extension of the Lie bracket to Lie
algebra-valued forms. These are not only coordinate invariant but conformally
invariant, for a connection A and a (1,0) form O with values in ad P. The second
equation of (1.3) simply says that 3> is holomorphic with respect to the
holomorphic structure on ad(P) <8>c K defined by the connection A on P and the
natural holomorphic structure of the canonical bundle K of (1,0) forms. Since
(1.3) is conformally invariant, we may consider solutions on a compact Riemann
surface M.

To sum up, we consider a connection A on a principal G-bundle P over M (M
and G both compact) and a complex Higgs field <I> e Q10(A/ ; ad P ® C). The pair
(A, O) will be said to satisfy the self-duality equations if

F = - [<D, <*>*], ]

REMARK. The formally similar equations

which arise in an analogous manner by dimensionally reducing the self-duality
equations in U4 with signature (2,2), have a geometrical interpretation: locally,
they correspond to harmonic maps from U2 to G. We shall deal elsewhere with
these equations which, as a consequence of their non-elliptic origins, do not share
the same rigidity of structure as do the self-duality equations considered here.

Two examples are of particular geometric interest.

EXAMPLE (1.4). Let <J> = 0; then the self-duality equations are simply F(A) = 0
and we are reduced to the consideration of flat unitary connections. This, via the
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theorem of Narasimhan and Seshadri [25], is equivalent to the study of stable
holomorphic bundles.

EXAMPLE (1.5). Let M be given a Riemannian metric g = hdzdz compatible
with the conformal structure. Then the Levi-Civita connection is a U(l)
connection defined on the canonical bundle K. Let K% denote a holomorphic line
bundle such that

with the induced U(l) connection. (These are spinor bundles for the Riemann
surface [15].) Let P be the principal SU(2) bundle associated to the rank-2 vector
bundle V = K? © K~3 and A the SU(2) connection (reducible to U(l)) defined by
the Levi-Civita connection. With respect to this decomposition of V, define
<D e Q10(ad(P) ® C) by

Note that this is well-defined since Hom(K?, K 2) is canonically isomorphic to
K~x, so 1 denotes the canonical section of Hom{K\ K~*) ® K. Note also that O
is clearly holomorphic. The remaining equation from the self-duality equations
(1.3) now takes the form

•\K 0 \ / I 0\
0 JFO) = (0 - l ) * * * '

where Fo is the curvature form of the tangent bundle K~x. Thus the equation
becomes

F0=-2h dz dz.

In other words, the metric has constant sectional curvature —4.
Solutions of this form are therefore given by isometries of the universal

covering of the Riemann surface M onto the upper half-plane.

These two examples are extreme cases of the self-duality equations. Both,
however, impose conditions on the underlying holomorphic structure. The
holomorphic structure of a vector bundle which admits a flat unitary connection
must be stable and the genus of a compact Riemann surface with negative
curvature must be greater than 1. Both these restrictions may be achieved by
vanishing theorems, and in the next section we shall prove vanishing theorems for
solutions of the self-duality equations.

2. Vanishing theorems

From now on, we shall restrict attention to the case where G = SO(3). This is
by no means necessary for all the arguments, but it makes calculations easier and
avoids the use of induction.

There are two cases to consider, depending on whether the second Stiefel-
Whitney class W2.{P) is zero or not. If w (̂P) = 0, then P is covered by a principal
SU(2)-bundle to which we may associate a rank-2 vector bundle V, with
cl(V) = 0. If W2(P)^0, then there is a principal U(2) bundle P to which P is
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associated via the homomorphism U(2)/Z(U(2)) = SO(3). Associated to P is a
rank-2 vector bundle V with c^{V) odd. Fixing a connection Ao on A2V, we find
that a connection A on P lifts to one on P, whose curvature is F(A) + %F(AO)1.

In both cases, therefore, we are considering a rank-2 vector bundle V, with a
fixed connection on the line bundle A2V. From a projective embedding of the
Riemann surface we know that any line bundle L has a connection A whose
curvature is

= (degL)co,

where co is a positive form. We fix co and take a corresponding connection on
A2V.

The vector bundle ad P ® C over Af is in both cases the bundle of endomorph-
isms of V of trace zero; hence the Higgs field O may be thought of as a section of
End0 V <8> K where End0 V denotes trace-free endomorphisms.

Let LczV be a subbundle of rank 1. We shall say that L is ^-invariant if
c L 0 K. Now we state the vanishing theorem.

THEOREM (2.1). Let (A, O) satisfy the SO(3) self-duality equations on a
compact Riemann surface M and let V be the associated rank-2 complex vector
bundle. If LczV is a ^-invariant subbundle, then

(i) deg(L)*sideg(A2V), am*
(ii) if equality holds then (A, <I>) reduces to a U(l) solution.

Note. Since [<&,<&*] = 0 for a U(l) solution, the equations (1.3) simply
decouple into a flat connection and a holomorphic 1-form 3>.

Proof. Let LczV be a 3>-invariant subbundle and seQ°(M;L*V) be the
holomorphic section corresponding to the inclusion. On the line bundle L we put
a connection with curvature equal to (deg L)a>, and using this connection and the
connection on V determined by A, we obtain a connection B on L*V. Since 5 is
holomorphic, we have

d"Bs = 0 e Q01(M ; L*V). (2.2)

Using the hermitian inner product on V, we form (d1^, s) e Q10(Af) and then

d'^d'ss, s) = (did'gs, s) - (d'ss, d'ss) e Qll(M). (2.3)
Now

and so, from (2.2) and (2.3),

d"(a"Bs, s) = (F(B)s, s) - {d'Bs, d'Bs).

Integrating over M we obtain by Stokes's theorem

[ ^5,^5>=f {F(B)s,s). (2.4)
But now JM JM

F(B)s = F(A)s - (deg L)sco + \

= -[<&, 0>*]5 + ( | deg(AV) - deg L)sco, (2.5)

by the self-duality equations (1.3).
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Now if A is a linear transformation and Av = kv,

{{AA* -A*A)v, v) = (AA*v, v) - \k\2 (v, v)

= {A*v-kv,A*v-kv)

with equality if and only if A*v = kv.
Hence if s is ^-invariant and deg L > \ deg(A2V), then (F(B)s, s) is negative.

But from (2.4) its integral is positive; hence we have a contradiction.
If deg L = \ deg (A2V), then d'gS=0 and s is O*-invariant. Since VBs =

d'eS + d"Bs = 0, the connection on V leaves L invariant. Moreover, 4> and <I>*
leave L invariant. It follows that (A, 4>) reduces to a U(l) solution of the
self-duality equations.

REMARKS (2.6). (i) Note that the connection A for a U(l) solution is flat and
hence the line bundle has vanishing first Chern class. Consequently, ^ (P)
vanishes. Thus principal SO(3) bundles with w2(.P)#0 cannot admit solutions to
the self-duality equations which reduce to U(l).

(ii) If 0 = 0, then any subbundle is O-invariant. The condition deg (L) <
|deg(A2V) for a bundle of rank 2 over a Riemann surface is the notion of
stability [13]. In the next section we shall examine the algebro-geometric idea of
stability for a pair of objects—a rank-2 holomorphic vector bundle V, and a
holomorphic section of End V <S> K—which Theorem (2.1) suggests.

If g is a section of the bundle of groups P xAd G then g is called a gauge
transformation. It is an automorphism of the principal bundle which leaves
invariant each fibre. The group of all C00 gauge transformations acts on
connections A and Higgs fields $> in a natural way and takes one solution of the
self-duality equations to another.

The idea of Theorem (2.1) leads to a theorem of uniqueness up to gauge
equivalence for solutions of the self-duality equations. This is a consequence of
the following more general theorem.

THEOREM (2.7). Let (Alf 3>x), (A2, 3>2) be two solutions of the self-duality
equations on a principal SO(3) bundle over a Riemann surface M. Let V be the
associated rank-2 complex vector bundle and assume that there is an isomorphism

h: V^>V

such that
(i) d"A2h = hd"Ait

(ii) 3>2/i = h<Px.

Then (A1} Ox), (A2, $2) are gauge-equivalent solutions.

Proof. The connections Ax and A2 define a connection A on W = V* <8)V and
Ox and O2 define a Higgs field <D e Q10(M ; End(F* ® V)) by

Moreover, (A, O) satisfies the SO(4) self-duality equations.
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Now the vector bundle isomorphism h, thought of as a holomorphic section of
W by Condition (i), is O-invariant. In fact ®h = 0 by Condition (ii).

Consequently, as in the proof of (2.1), we obtain

f {d'Ah,d'Ah)=\ -

Hence d'Ah=0 and <!>*/* = 0. Thus h is covariant constant with respect to the
unitary connection A. So therefore is the unitary transformation

Since O*/i = 0, Q>2h* = h*<&1 as well as O2/I = /I4>I. Hence <52g = g3>i. We
therefore have a unitary transformation g such that

Under the homomorphism

U(2)-> U(2)/Z(U(2)) = SO(3)

we obtain an SO(3) gauge transformation taking (A1} O^ to (A2, <b2), as
required.

3. Stability

We introduce next the generalization of stability of vector bundles which will
govern the rest of the paper.

DEFINITION (3.1). Let V be a rank-2 holomorphic vector bundle over a compact
Riemann surface M and O a holomorphic section of End V ® K, where K is the
canonical bundle of M. The pair (V, 4>) is defined to be stable if, for every
4>-invariant rank-1 subbundle L of V,

deg L < \ deg (A2V).

REMARKS (3.2). (i) As mentioned in (2.6), when 0 = 0, this definition reduces
to the ordinary definition of stability for a rank-2 vector bundle. However, the
pair (V, <1>) may be stable even if (V, 0) is not.

(ii) One example of a stable pair is provided by (1.5). We take V =
on a Riemann surface of genus g > 1 and

= L 0 ) e H°(M ; End V <8> K).

Stability is obvious since K *, which is of negative degree, is the only ^-invariant
subbundle.

(iii) There are no rank-2 stable pairs on P1, for every vector bundle is of the
form

V = O{m) © O{n) where m,neZ,

and since K = 0(-2), every O e /^(P1; End V ® K) is of the form

0 0j

,02 0
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with 0! e H°(P\ O(m -n-2)) and d2 e H°(P\ 0{n-m- 2)). Without loss of
generality assume that m - n ^ 0; hence d2 = 0 and O(m) is O-invariant.
However,

deg O(m) = m&i(m + n) = l deg(A2V).

(iv) On an elliptic curve, every indecomposable bundle is, after tensoring with
a line bundle, equivalent to the non-trivial extension [3]

defined by H\M;0) = Cor

where 0(1) is a line bundle of degree 1, defined by HX(M ; 0 ( - l ) ) = C. Since the
canonical bundle is trivial, the Higgs fields O are endomorphisms of V, but in the
first case the distinguished trivial subbundle L = O is invariant by each en-
domorphism. But deg L = 0 = \ deg A2V. The second example is stable, and
hence the only endomorphisms are scalars. Thus (V, 0) is the only stable pair.

For a decomposable bundle Lx 0 L2 each <I> is of the form

'a b
\c —a*

where b e H°(M ; L^Lx) and ceH°(M ;LlL2). If d e g ^ ^ ) 2* 0 and L\LX is
non-trivial, c = 0 and then Lx is invariant but degZ^s^ deg^jZ^). If L1 = L2>

then a, b, c are constants and the matrix certainly has an eigenspace which is a
subbundle of degree zero.

Consequently, there are no stable pairs for an elliptic curve other than (V, 0)
where V is the unique non-trivial bundle with odd degree.

In the case of surfaces of genus greater than 1, stable pairs occur with more
frequency, but there are still restrictions on the holomorphic structure of the
underlying vector bundle V. We recall the various types of rank-2 bundles on a
Riemann surface (see [5]):

(i) V is stable if for each subbundle L, deg L < \ deg(A2V);
(ii) V is semi-stable if for each subbundle L, deg L *s \ deg(A2F);
(iii) if V is not semi-stable, there is a unique subbundle Lv with deg Lv >

The following proposition catalogues the types which can occur in stable pairs.

PROPOSITION (3.3). Let M be a compact Riemann surface of genus g > 1. A
rank-2 vector bundle V occurs in a stable pair (V, <1>) if and only if one of the
following holds:

(i) V is stable;
(ii) V is semi-stable and g > 2;

(iii) if V is semi-stable and g = 2 then V = U <8> L where U is either decom-
posable or an extension of the trivial bundle by itself;

(iv) V is not semi-stable and dim H°(M ; Ly2K <E> A2V) is greater than 1, where
Lv is the canonical subbundle;
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(v) V is decomposable as

V = Lv®{Ll®\2V) and dimH°(M ; Ly2K 0 A2V) = 1.

The method of proof of (3.3) leads to the following more uniform characteriza-
tion which will be useful in proving the analytical results of § 4.

PROPOSITION (3.4). Let M be a compact Riemann surface of genus g > 1. A
rank-2 vector bundle V occurs in a stable pair (V, <I>) if and only if there is a
Zariski open subset U c H°(M ; End V <8> K) such that if 4> e U, then <J> leaves
invariant no proper subbundle.

Proof of (3.3). We shall use the complex surface P(V) obtained by projectiviz-
ing the vector bundle V, and convert questions concerning sections of vector
bundles on M to questions of divisors on P(V). There is a tautological bundle H
on P(V) (positive on the fibres) whose sections along the fibre over x eM
constitute the vector space V*. Thus, if p: P(V)^>M denotes the projection,
p*H = V* where pji is the direct image sheaf, and

where S2V* is the second symmetric power of V*, the bundle of quadratic forms
on V. If A € End V, then Av A V defines1 a quadratic map from V to A2V, the
scalar endomorphisms going to zero. Using this, we may identify as vector
bundles

S2V*®A2V =
where End0 V denotes the traceless endomorphisms, and consequently

p*H2K ® A2V = End0 V <g> K.

There is, moreover, an isomorphism of sections,

s: H°(M ; End0 V <8> K)-^+ H°(P(V); H2K ® A2V) (3.5)

obtained by pulling back and pushing down.
In this framework, a subbundle Lc^V defines a section of L*V and hence a

section on P(V) of HL* ® A2V. Its divisor D(L) is the canonical section of
P(y)^*M determined by the rank-1 subbundle. Moreover, <l> e
H°(M ; End0 V <8> K) leaves L invariant if and only if

3>u A v = 0 for all v e L,

that is, if s(<P) e H°(P(V), H2K ® A2V) vanishes on D(L). In this case D(L) is a
proper component of the divisor of s(<l>). If the divisor of .s(3>) were irreducible,
then 3> would leave invariant no subbundle. It is through irreducibility we shall
prove the proposition, making use of Bertini's theorem: the generic divisor of a
linear system of dimension at least 2 with no fixed component is irreducible.

First we check that the linear system of divisors of H2K 0 A2V has dimension
at least 2. This is equivalent from (3.5) to dim H°(M ; Endo V <S> K) ^ 3.
However, by the Riemann-Roch theorem,

dim H°(M ; End0 V <8> K) - dim H\M ; Endo V <8> K) = 3g - 3 ^ 3 i f g > l .
(3.6)
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Now suppose H2K <8> A2V has no fixed components. Then, by Bertini's theorem,
a generic O e H°(M ; Endo V ® K) leaves invariant no subbundle, and so in
particular (V, O) is a stable pair. If the system has a fixed part, it is contained in
the divisors of a line bundle of one of the following types:

(a) H2L, (b) HL, (c) L,

where L is a bundle pulled back from M.
For Type (c) the divisors of the bundle H2KL* <8> A2V have no fixed part, so by

Bertini a generic 3> e H°(M ; Endo V <8> KL*) leaves invariant no subbundle.
Multiplying by the fixed section of L on M, we find that neither does a generic
section of Endo V ®K.

For Type (a), every O e H°(M ; Endo V <g> K) is of the form O = 3>0s, where
$ 0 e #°(M ; Endo V ® LA2V*) and s e H°(M ; L*K <8> A2V).

If Tr 3>o =£ 0, then consider the linear map

a: H°(M ; L*K ® A2V)^>H°(M ; tf2)

defined by

a(s) = Tr OoM

for some fixed sx e H°(M ; L*̂ C <8> A2V). This is clearly injective, but from (3.6),

dim H°(M ; L*K ® A2V) ^ 3g - 3 = dim H°(M ; A"2),

so or is an isomorphism. However, a(s) vanishes at the zeros of sx but K2 has no
basepoints. Thus Tr 3>o = det 3>0 = 0- The kernel of <I>0 then defines a subbundle
L c V invariant by all <D e H°(M ; End0 V ® /C).

In Type (b) the subbundle defined by the fixed section of HL is by definition
invariant for all 3>.

We conclude therefore that the vector bundles V for which a generic O
leaves no subbundle invariant are those which have no subbundle invariant by all
3>.

To return to the statement of Proposition (3.3), if V is stable, then clearly
{V, 3>) is stable for all <E>.

Assume therefore that Vhas a subbundle L with d e g L ^ \ d e g A2V. Then Vis
an extension

and there is a corresponding subbundle

/CL2®A2V*

which leaves only L invariant. Since

this subbundle has sections. If V has a subbundle invariant by all <I>, this must
clearly be it. We investigate the possibilities by considering the exact sequence of
vector bundles

V ® K-+ L~2K® A2V-*0. (3.7)

Sections of V*®KL are the sections <I> e H°(M ; End0 V ® K) which leave L
invariant, so from the exact cohomology sequence of (3.7) we must have the
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coboundary map injective:

H°(M ; L~2K <8> A2V)-^ H\M ; V* <8> KL). (3.8)

Consider the exact sequence of vector bundles

0 >KL2 ®A2V* >V*®KL^-+K »0 (3.9)

and its cohomology sequence.
If deg L > \ deg A2V, then H\M ; KL2 0 A2V*) = 0, so

#i(M ; V * ® £L) 2 //!(M ; C) = C.

Thus if dim H°{M ; L"2A" ® A2V) s* 2, then 6 can never be injective, and we have
a contradiction. This gives Case (iv).

The map

jzd: H°(M;L-2K®A2V)-+H\M;K)

is given by the product with the extension class e eHl(M ; L2<8> A2V*) defining
V. By Serre duality, this is surjective if e =£0. This provides Case (v).

Clearly if H°(M ; L~2K <g> A2V) = 0, then d is injective.
It remains to consider the semi-stable situation deg L = \ deg A2V.
If L2 ® A2V* is non-trivial, H\M ; KL2 ® A2F*) = 0 and so

H\M ; V* ®KL) = H\M ;K) = C

as above. Since then

dim H°(M ; L~2K ® A2V) = g - 1,

6 can be injective only if g = 2. By Serre duality again this means that the
extension defining V is non-trivial.

If L2® A2V* is trivial, then the coboundary map

in (3.9) is surjective by Serre duality for a non-trivial extension, and hence
HX{M ; V* ® KX) is still 1-dimensional. However, in this case

and 6 can never be injective if g s* 2. The only possibility is the trivial extension

® A2V) = L

but then 6 = 0, so this occurs in a stable pair. This finally deals with Case (iii).
We have shown that all Cases (i)-(v) occur in stable pairs. To prove the

converse we simply look at the excluded bundles, and these were characterized as
unstable bundles with a subbundle L invariant by all ®eH°(M ; End0 V <8> K).
We saw moreover that deg L ̂  \ deg A2V and so there are no stable pairs (V, 3>).

Proof of (3.4). In the course of the proof of Proposition (3.3) we established
Proposition (3.4) for all bundles except stable bundles, and what is required to
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complete the proof is to show that a stable bundle V has no subbundle L invariant
by all $ e H°(M ; End V <8> K).

Suppose there were such a bundle, so that V is an extension

Since V is stable,

If L is invariant by all O e H°(M ; End V ® K) then from (3.7) all such $ are
sections of V* <8> KL. Now consider the exact sequence (3.9),

0-> KL2 <8> A2V * - • V * <g> £L-H> * : - • 0.

Since deg(/«:L2 (8) A2V*) < 2g - 2, we have

dim H°(M ; AX2 ® A2V*) <g. (3.10)

But since dim//°(M ; K) =g, the exact cohomology sequence for (3.9) gives

dim H°(M ;V*®KL)^2g-l.

On the other hand, from the Riemann-Roch theorem,

dim H°(M ; End Vo ® K) ^ 3g - 3. (3.11)

Thus if H°(M ; Endo V ® K) = H°(M ; V* ® KL), we have necessarily g = 2, and
in (3.10),

dim H°(M ; KL2 <g> A2V*) = 1.

Since deg K = 2 and deg L2 <8> A2F* < 0, there are only two possibilities:

* = K-X or

for some point xeM.
In the first case the exact sequence (3.9) is

0-»O-> V* ® KL^>K-+0

and since V is indecomposable this is a non-trivial extension. But the coboundary
map

6: H°(M;K)-+H\M;O)

is non-zero, so that dim H°(M ; V* <8» AX) =s 2, which contradicts (3.11).
In the second case, the exact sequence is

The coboundary map

6:

is given by the cup product with the extension class in Hl{M ; K~x{x)). Dualizing,
we see that the map 6 is non-zero if the product map

H°(M ; K) <g> H°(M ; K(-x))-+H°(M ; K\-x))

is surjective. This however is clearly true since K(-x) = O(x') and
dim H°(M ; K) = dim H°(M ; K\-x)) = 2.

Thus again we obtain dim H°(M ; V* ® /CL) =s 2 and a contradiction.
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REMARKS (3.12). Conditions (iv) and (v) of Proposition (3.3) show that when a
bundle V is unstable, there is a constraint on the canonical subbundle Lv in order
for it to belong to a stable pair. In particular, since dim H°(M ; Ly2K ® A2V) s* 1,
we must have firstly

0< deg (L?, ® A2F*) ^ 2g - 2

and then, if deg(Ly® A2V*) >g - 2, the line bundle must be special.
Note that if deg(L^ ® A2V*) = 2g-2, then the condition

dimH°(M;L?K®A2V) = l
implies that

L2
V®A2V* = K.

From Case (v) of (3.3) this means that

which is equivalent to the bundle occurring in Example (3.2)(ii).
The information we have derived so far is enough to provide an explicit

description of stable pairs for a surface of genus 2. We split the problem into two
cases corresponding to deg(A2V) even or odd. By tensoring with a line bundle we
may assume that

A2V = O or A2V = O(x)

for some fixed point x eM.

EXAMPLE (3.13). If g = 2 and A2V = O then (3.3) and Remark (3.12) yield the
following possibilities for V:

(i) Fis stable;
(ii) V = L® L* where L2 is non-trivial;

(iii) V = L®L* = L®{O®O) where L2 is trivial;
(iv) V is a non-trivial extension of the trivial bundle O by itself;
(v) V = K* © K~* where K? is a holomorphic line bundle such that

In Case (i), of course, {V, <£) is stable for any <J> in the 3-dimensional space
H°(M ; End0 V <8> K). The stable bundle V itself is, from a result of Narasimhan
and Ramanan [26], determined by the subbundles of deg - 1 it contains. This is a
divisor of the system 20 in the Jacobian Jl{M), and so each stable bundle is
determined by a point in the 3-dimensional projective space P{H°{Jl{M); 20)).
In fact the stable ones correspond bijectively to the complement of a Kiimmer
surface in the projective space, parametrizing the bundles which are decom-
posable into a sum of line bundles of degree zero.

For Case (ii), (iii), and (v), any 0> e H°(M; End0 V ® K), where V is
decomposable as V = L(&L*, may be expressed as

\c -a)

where a e H°(M ;K), be H°(M ; L2K), and c e H°(M ; L~2K).
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In Case (ii), it is trivial that the only subbundles with degree greater than or
equal to \ deg A2V = 0 are L and L*. Hence (V, 4>) is stable if and only if neither
b nor c is identically zero.

Since dim H°(M ; L2K) = dim H°(M ; L~2K) = 1, O is stable if it lies in the
complement of the two hyperplanes b=0 and c = 0 in the 4-dimensional space

°
In Case (v), K~% is the only subbundle with degree at least zero. In this case

dim H°(M ; (K^)2K) = dim H°(M ; O) = 1,

dim H°(M ; (K*)2K) = dim H°(M ; K2) = 3,

and O is stable if c=£0. This is the complement of a hyperplane in the
6-dimensional space H°(M ; End0 V <8> K).

In Case (iii), V = L ® C2 and the subbundles of degree at least zero are simply
the fixed subspaces of C2. We can express <£ uniquely as

O = Al(xl + A2a2

where the At are 2 x 2 traceless matrices, and <xx, a2 is a basis of H°(M ; K). The
subspaces of the 6-dimensional space H°(M ; Endo V <S> K) of stable O is then
isomorphic to the set of all pairs (Al} A2) of matrices with no common
eigenspace.

In Case (iv), the trivial subbundle L of V is unique. Hence, from the proof of
(3.3), the kernel of 8 in (3.8) is 1-dimensional, so from the exact sequence of
(3.7), dim H°(M ; Endo V®K) = 4 and the stable 0 lie in the complement of the
hyperplane of sections which leave L invariant.

EXAMPLE (3.14). If g = 2 and A2V = O(x), then we have the following
possibilities from Proposition (3.3) and Remark (3.12):

(i) V is stable;
(ii) V = L0L*(x) where L is a line bundle of degree 1, with

° 2

In Case (i), (V, <1>) is again stable for any O in the 3-dimensional space
H°(M ; Endo V®K). The stable bundles considered here are parametrized by
the intersection of two quadrics in P5 (see [26, 28]). Each point y eM, considered
as a double covering of the projective line, parametrizes a quadric Qy of the
pencil together with a choice of ar-plane or /S-plane. Fixing a point q in the
intersection of the quadrics of the pencil, we define the fibre of P(V) over y to
consist of the ar-planes in Qy passing through q.

In Case (ii), KL~2(x) is a line bundle of degree 1, so the condition that
dim H°(M ; KL~2(x)) = 1 means that

for some y eM. Modulo tensoring with a line bundle of order 2, the relevant
vector bundles are thus parametrized by the points of M itself.

The Higgs field <I> again has the form

\c -a)
where a e H°(M ;K), be H°(M ; KL\-x)), and c e H°(M ; KL~\x)). The only
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subbundle with degree greater than \ deg (A2V) = \ is L itself, so O is stable if
c=£0. Thus the stable O lie in the complement of a hyperplane in the
4-dimensional space H°(M ; End0 V ® K).

Note throughout these examples that the simpler the description of V, the
more complicated is the stability condition on <I>. Treating the complex structure
on V and the constraint on 3> as separate objects clearly leads to a complex
description of stable pairs (V, <J>). The aim of this paper is to put the two together
and describe equivalence classes in terms of a moduli space which is endowed
with a uniform geometrical structure.

There is a further condition which a stable pair (V, 4>) possesses, analogous to
the statement that a stable bundle is simple:

PROPOSITION (3.15). Let (Vx, ®x) and (V2, 3>2) be stable pairs with A2VX = A2V2

and W: Vx-+V2 a non-zero homomorphism such that W&x = O2W. Then W is an
isomorphism. If (Vx, &x) = (V2, 3>2),

 tnen ^ is a scalar multiplication.

Proof. If V is not an isomorphism then there are subbundles Lx c= Vi and
L2 c V2 such that im V c L2 and Lx c ker W which, since W ^ = O2W, are
invariant by Ox and O2 respectively. Hence by stability,

and
deg L2 < \ deg A2V2 = irf.

But W defines a non-zero homomorphism from V\ILX to L2, and hence

But deg(V1/L1) = deg A2VX — deg Lx > \d, which is a contradiction. Hence W must
be an isomorphism.

If (Vi, <J>x) = (V2, <I>2), then det W is a constant and so the eigenvalues of W are
constant.

Thus if we have distinct eigenvalues, the eigenspaces decompose V as a direct
sum:

Since <&x = <J>2 leaves Lx and L2 invariant, we have by stability

deg Lx < \ deg A2V = ^(deg Lx + deg L2),

degL 2 <\ deg A2V = ^(degLx + degL2),

which is clearly a contradiction as before.
If W = XI + Wo where <J>0 is nilpotent, then ker WQ defines a subbundle invariant

by 4>. As in (3.9) this means that Wo defines a section of L2®A2V*, but by
stability deg(L2® A2V*)<0, so all sections vanish. Thus V0 = 0 and W is a
scalar.

4. An existence theorem

The link between the algebro-geometrical idea of stability and the self-duality
equations is provided by Theorem (2.1). It implies that if (A, <I>) is an irreducible
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solution to the SO(3) self-duality equations on a compact Riemann surface M,
then the associated pair (V, <E>) is stable. The aim of this section is to prove the
converse: to each stable pair (V, <£) there corresponds a solution to the SO(3)
self-duality equations, unique up to gauge equivalence. Using this result we shall
be able to knit together the equivalence classes of stable pairs (V, <l>) into
a differentiate manifold with a structure which is rich from the complex,
Riemannian and symplectic point of view. Note that if <£ = 0, the converse result
is equivalent to the theorem of Narasimhan and Seshadri that a stable bundle
admits a canonical flat unitary connection [25]. In fact our proof is modelled on
Donaldson's proof of this theorem [6]. It is an analytical proof which makes use
of one non-trivial and highly effective tool in gauge theory: Uhlenbeck's weak
compactness theorem [32].

To motivate the proof, we consider the structure of the equation

F + [<!>, <P*] = 0 (4.1)

which forms part of (1.3), in terms of moment maps.
Recall that if N is a Kahler manifold with Kahler form co, and X is a Killing

field which preserves co, then

0 = S£xw = d{i{X)(o) + i(X) dco = d(i(X)co),

so that if H\N ; R) = 0 then

i(X)co = dfx

for some function /, the Hamiltonian function for the vector field X. Moreover,

g(grad/r, Y) = dfx(Y) = co(X, Y) = g(IX, Y),

so that

giadfx = IX. (4.2)

If a Lie group G acts on N by isometries which preserve co, then under rather
general conditions the functions fx fit together to give an equivariant moment
map JU: Af-» g* defined by

, X) =fx(x),

where we identify the vector field X with the corresponding element in the Lie
algebra Q of G.

There are two fundamental examples. The first is 7V = E n d C with Kahler
metric

and G = U(n) acting by conjugation. Then if X e Q, and

fx(A) = 1
2iTr([A,A*}X),

we have

dfx(Y) = ii Tr([Y, A*)X + [A, Y*]X)

= iImTr([X,A]Y*)

= ReTr([iX,A]Y*).

Hence (t(A) = li[A, A*] is a moment map.
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The second example is infinite-dimensional and due to Atiyah and Bott [5].
Take N to be the infinite-dimensional affine space si of connections on a unitary
principal bundle P. Each such connection is determined uniquely by its (0,1) part
d"A and the tangent space to si at A is the complex space Q01(M ; a d P ® C ) ,
which carries the Kahler metric

The moment map for the action of the group of gauge transformations $ is then

If we consider the natural action of % on Q1>0(ad P 0 C), then it is easy to see,
from the first example, that with the Kahler metric

the moment map is

/ * 2 ( 3 > ) = [<*>, <*>*]•

Thus the equation (4.1) is equivalent to the equation

for the moment map of the group of gauge transformations ^ acting on both
factors of the infinite-dimensional Kahler manifold

N = six Qh0(M ; ad P <g> C). (4.2)

Now suppose the Lie algebra g has an invariant inner product and the action of
the group G extends to a complex group Gc of holomorphic transformations. We
restrict the function ||JU||2 to an orbit and look for the critical points.

If Gc acts freely (or with finite isotropy) on the orbit, since grad fxx = IX, we
have that

, Tx)

is injective. Thus

grad ||p||2 = 2(ju, gradJU) = O at xeN

only if fi(x) = 0.
From this point of view we attempt to solve the equation F + [<1>, <£*] = 0 by

considering an orbit of a stable pair

(A, <D) e si x Qh0(M, End0 V)

under the group of complex gauge transformations W = Q°(M ; Auto V), the
group of automorphisms of V with determinant 1. Choosing a metric on the
Riemann surface M, we find a minimum for

on the orbit. By Proposition (3.15), <SC acts freely on a stable orbit, so we will
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produce a solution of
H = F + [$, <D*] = 0.

THEOREM (4.3). Let A be an SO(3) connection on a bundle P over a compact
Riemann surface M of genus g>\, and let Oe Q10(M ;adP<8>C) satisfy
d"A<& = 0. Let V be an associated rank-2 vector bundle with complex structure
determined by A. If (V, 3>) is a stable pair, then there exists an automorphism of V
of determinant 1, unique modulo SO(3) gauge transformations, which takes
(A, 4>) to a solution of the equation F(A) + [O, O*] = 0.

Proof. As in [27, 6] we shall work with connections which differ from a smooth
connection by an element of the Sobolev space L\, and use automorphisms which
lie in L\. Since (from [5]) every L\ orbit in the L\ space of connections contains a
C00 connection there is no loss of generality as far as A is concerned. Also, since
O satisfies the elliptic equation d"AQ> = 0, we can by elliptic regularity deduce that
3> is C°°. We therefore start with 3> in the L\ space, so that [O, $*] e L2.

We have fixed a metric on M, and as discussed above, consider the functional

= [ \\F(A)
J>M

2on an orbit under the group of Ll complex gauge transformations of a stable pair
(A, O). Let (An, <&„) be a minimizing sequence for / on this orbit; hence, in
particular,

\\F(An)+ [<!>„, $>*n]\\L2<m. (4.4)

We shall use the theorem of Uhlenbeck [32] which implies that if An is a sequence
of L\ connections over M for which F(An) is bounded in L2, then there are
unitary gauge transformations gn for which gn . An has a weakly convergent
subsequence.

The inequality (4.4) does not immediately give an L2 bound on F{An).
However, we may use the Weitzenbock formula (2.4) applied to <I> e
H°(M ; End0 V <8> K) to obtain

f < < * ; * , d'B<t>) = f
JM JM

*],*>+(2fc-2)
J

, * * ] > + (?g-2) f co(*,<t>), (4.5)
JM

= f
JM

[
M

[
JM

where (2g - 2) a) is the positive curvature of a connection on the canonical bundle
out of which the connection B on End0 V ® K is formed.

We deduce the inequality

0^<F,[a>,a>*])L2 + c||O||i2. (4.6)
Hence

0 ^ (F + [<*>, * • ] , [*, <D*]>L2 - ||[<D, **]||i« + c \\nh (4.7)

and, from (4.4),

(Fn + [<*>„, <*>„*], [*B, *t])L2*im !![*,„ *:]||L2. (4.8)
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Putting together (4.7) and (4.8) we derive the inequality

aa i l i ^C i + CaHGJia (4.9)
for positive constants cx and c2.

Now if A is a 2 x 2 matrix of trace zero,

Tr(AA * - A *A)2 = 2 Tr(AA *)2 - 2 Tr ,4l4 *2

= 2Tr(AA*)2-4|detA|2.

Since TT(AA*)2 ^ \(TT AA*f, using ||A||2 = Tr,4;4*, we have the inequality

||[i4, y4*]||2 + 4|det;4|2251|^4||4. (4.10)

Now L\ c: L4 and using the Schwarz inequality we obtain

A
| |On| | «£ I Area(M). ||OW|| I .

JM \ JM I

Thus integrating (4.10) we have

However, each <!>„ is on the same orbit under the group of complex gauge
transformations acting by conjugation, so

det <E>n = det Oj e H°(M ; K2).

Thus from (4.9) and (4.11) we have

II*,,111* ^^1 + ^2 ll*«lli» for some Ku K2 > 0,
and so

I I ^ I L ^ A : . (4.12)

Equation (4.9) now gives a uniform L2 bound on [<£„, 4>*] and (4.4) then gives an
L2 bound on F(An).

From Uhlenbeck's theorem, after applying unitary gauge transformations, we
may assume that An converges weakly in L\ to a connection A.

We now require L\ bounds on <£„. The inequality (4.10) gives an L4 bound.
However, <!>„ satisfies the elliptic equation

which may be written in terms of a fixed C00 ^''-operator as

d"<t>n + [an><t>n] = O. (4.13)

Since An is bounded in L2 and L2 c: L4 is compact, we have an L4 bound on ocn

and 4>n and hence an L2 bound on [<*„,<!>„]. However, for the elliptic operator d"
we have the estimate

and so from (4.12) and (4.13) we obtain an L2 bound on <$„. By the weak
compactness of L\, this has a weakly convergent subsequence tending to <l>. In
order to complete the proof we must show that (A, <£) lies on the same orbit as
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(An, <$„). To this end define the operator

d"AnAx\ Q°(M ; V* <g> V)-> Q°-\M ; V* <8> V)

by using the connection An on the V* factor and Ax on the V factor. Hence

where fin-*Q weakly in L\. The elliptic estimate for dAAl is

\\nL^c(\\d'AAiy\\Li+\\nL>).

Suppose now that d"AnA^n = 0 and ||t/;n||i,2= 1. Then

Since L\ a L4 is compact, ||j3,,||L4-»0 and so we obtain an L\ bound on %})„ which
therefore has a weakly convergent subsequence. Since ||'«///IIIL2 = 1 a nd L\aL2 is
compact, this weak limit \j) is non-zero.

In our case, take tj)n to be the complex automorphism which maps (An) <&„) to
(Alt Oi), normalized in L2. This by definition satisfies

and furthermore satisfies the algebraic identity

^>i^-^^=0. (4.14)

Since ipn and <!>„ converge weakly in L\ and L\ <=. L4 is compact,

0 = ||*i v* - V-Gnllr*-* ll*i V - V*IL»

and so, in the limit,

= 0 and dAAl\{) = 0. (4.15)

If i/; were an isomorphism, then it would be the required complex gauge
transformation to place (A, <E>) on the same orbit as (A1} <!>!). If V is not an
isomorphism, then ip maps V into a subbundle L of V, holomorphic with respect
to d"Ax. Moreover by (4.15), L is invariant by <J>X. Since (A1} <S>X) is stable, then by
Proposition (3.4) this is impossible for Oi in a Zariski open set. Thus, for a
generic <J>l5 (A, O) is on the same orbit and is a minimum for the functional / and
consequently gives a solution to the equation

F(A) + [4>, $>*] = 0. (4.16)

Note now some consequences of the inequalities established above when the
equation (4.16) is satisfied. From (4.6),

(4.17)

and from (4.11) and (4.17),

Wnh^c. + ̂ l |det<*>|2 (4.18)

for positive constants cx and c2.
Fix a complex structure Ao on V, and consider <£ e H°(M ; End0 V ® K). We
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have shown that for a Zariski open (and hence dense) set

there is a solution to the self-duality equations equivalent under an automorphism
to (Ao, <I>). Now suppose <£„ e U and, in the finite-dimensional vector space
H°(M ; End0 V <8> K), suppose <&n tends to <J>0. Then in particular,

det <Dn -+ det <D0 e H°(M ; K2)

and so, from (4.17) and (4.18), [On, O*] = -F(i4B) is bounded in L2. Therefore,
by the arguments above, we may assume after applying unitary gauge transfor-
mations, that (An, Ow) tends weakly to (A, O) in L\. However, (An, <&„) satisfies
F(An) + [<£„, <£*] = 0, which is preserved under weak limits, so (A, <I>) also
satisfies these equations. We need to show that if (Ao, 3>0) is stable, then (A, <£)
is in the same orbit under complex automorphisms.

Now the complex structures An are all equivalent to Ao so we have complex
gauge transformations i//n in L\ such that

and

by assumption. This convergence is in the finite-dimensional vector space
H°(M ; End0 V <8> K), and so holds for any norm.

Repeating the argument above, we see that if ipn is normalized in L2, then
V/i —*• V weakly in L\ where

d'XAlH> = 0. (4.20)
Furthermore, since

and V̂n is bounded in L2 and furthermore (4.19) holds, we deduce, using the
compact inclusion L\ c: L4, that

O0^ = 0. (4.21)

We wish to show that xp is an isomorphism, but this follows from Proposition
(3.15) since (AQ, 3>0) is stable by assumption and (A, 3>) is stable from Theorem
(2.1), since it satisfies the self-duality equation. Thus ip must be an isomorphism
and (A, O) is equivalent to (Ao, 3>0).

The uniqueness in (4.3) follows from Theorem (2.7).

COROLLARY (4.22) (Narasimhan and Seshadri). Every stable rank-2 bundle V
over a compact Riemann surface M of genus g>\ is associated to a flat SO(3)
connection, unique up to gauge transformations.

Proof. Take 0 = 0; then (V, <I>) is stable only if V is stable. The equation
F + [<&, <*>*] = 0 yields F = 0.

Note that although the above proof follows Donaldson's half-way, the use of
the auxiliary field 3> in the generic case leads to a quite short conclusion. The
extra tool to pass from the generic to the special case is a further application of
Uhlenbeck's theorem.
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COROLLARY (4.23) (Riemann, Poincar6, and Koebe). Every compact Riemann
surface of genus g > 1 admits a metric of constant negative curvature.

Proof Take V = & 0 ff~i, and O = ( ) as in (3.2)(ii). This is a stable pair

and Theorem (4.3) provides a solution to F + [<&, <£*] = 0, unique modulo
unitary gauge transformations.

Now if (A, O) solves the self-duality equation, so does (A, eie$) for a constant
6. However, in this instance, the automorphism of the complex structure of V,

ie12

gives

and so (A, O) and (A, e'eO) are in the same orbit under complex gauge
transformations. By uniqueness, they must be gauge-equivalent solutions. This
implies that the connection A has a 1-parameter group of automorphisms and
must be reducible to a U(l) connection. The relationship with metrics of constant
negative curvature is given in Example (1.5).

5. The moduli space

We have proved in (4.3) an existence theorem for solutions of the self-duality
equations on a Riemann surface. We shall now consider the space of all solutions
on a fixed principal bundle P, modulo the group of gauge transformations. This is
a setting which is by now familiar in the context of gauge theories on 4-manifolds
[4, 7, 30] or stable bundles on Riemann surfaces [5]. The basic idea is to linearize
the equations and consider the elliptic complex which arises from this. An
application of the Atiyah-Singer index theorem and a vanishing theorem will
yield the dimension of the linearization. Slice theorems and elliptic estimates then
show that the moduli space is a manifold of the calculated dimension.

We begin with the part which is specific to this problem: the linearization of the
self-duality equation (1.3)

F{A) = -[$>,$>*], ]
d'X<*> = 0. J

If (A, 6 ) 6 Q\M ; ad P) © Q 1 0 ( M ; ad P <8> C) denotes an infinitesimal variation,
then the equations are satisfied to first order if

dw + [A°>\<?>] = 0. J K }

The infinitesimal variation arises from an infinitesimal gauge transformation
i/;eQ0(M;adP)if

A = d^ } (5 2)
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We obtain this way a complex

Q°(M ; ad P) -^-> Q\M ; ad P) 0 Q10(M ; ad P <g> C)

- ^ Q2(M ; ad P) 0 Q2(M ; ad P ® C), (5.3)
where

d2{A, <t>) = (dAA + [<j>, <D*] + [<D, 6 * ] , <̂ <j> + [ i 0 '

Considering the highest-order part of the differential operators d1 and d2, we see
that the complex is elliptic and has the same index as the direct sum of the two
complexes (for G = SO(3)),

Q°(M ; 1R3) - ^ Q\M ; 1R3) -^-> Q2(M ; 1R3),

0 > Qh0(M ; C3) - ^ Ql!l(M ; C3),

which is (considering real dimensions) given by

index = 3(2 - 2g) - 6(g - 1) = 12(1 - g). (5.4)

The vector space of infinitesimal deformations of the equation modulo in-
finitesimal gauge transformations is the first cohomology group of the elliptic
complex (5.3), and (5.4) says that

dim H° - dim H1 + dim H2 = 12(1 - g).

Now H° = ker dx consists of the space of ip e Q°(M ; ad P) which are covariant
constant with respect to the connection A, and commute with <£. If / / ^ O , then
the solution to the self-duality equations must be reducible. To deal with H2, we
must show that ker d* = 0, and this can be done by considering the single
operator d* + dx. In fact if we pair the operator d* acting on the real space

Q2(M;adP) = Q°(M ;adP)

with dx into a complex operator acting on Q°(Af ; ad P <8> C), and identify
Q\M ; ad P) with the complex space Q01(M ; ad P ® C), then we define

dt + d^. Qo(M;adP®C)0Qo(M;adP<8)C)

- • Q°'\M ; ad P ® C) 0 Q10(M ; ad P <g> C).

Calculating the adjoint of d2, we find that (d2 + di)(Vi* ^2) = 0 if and only if

(5.5)

Now from (5.5),

dAd'A^i = [<*>*, d'Axjj2] (since d'A®* = 0)

= -[<!>*, [0>, Vi]] (from (5.5)).

Thus since
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we have

and, on integrating,

so that d"Aqx = Q and [O, v J = 0.
Now apply the vanishing method of Theorem (2.7) to the holomorphic section

Vi of ad P <8> C and we obtain

4 ^ i = 0 and [<&*, v J = 0.

If the solution is irreducible, then the covariant constant section ip1} commuting
with O, must vanish.

Repeating the argument with T//2, we see similarly that ip2
 m ust vanish

identically.
We have thus proved that, at an irreducible solution to the self-duality

equations, the Oth and 2nd cohomology groups of the complex (5.3) vanish, and
hence in particular, from (5.4),

l). (5.6)

Now we pass to the general setting of moduli spaces. We consider, as in § 4, the
space

d(M ; P) x Q1)0(M ; ad P ® C) = si x Q,

the product of the space of L\ connections on P with L\ sections of ad P ® c K,
and the action of the group $ of L\ SO(3)-gauge transformations on it. This is a
Banach manifold with the smooth action of a Banach Lie group on it [5, 30].

A slice for the action may be found at a regular point (A,®), that is, one for
which the group ^ of gauge transformations has isotropy group the identity. This
implies that there are no non-zero solutions to d1i}> = 0 where dlif) =
(dAijf, [*, \jt]).

The slice is defined as the kernel of d*, and the slices provide coordinate
patches for the quotient

of the open set of regular points by the group of gauge transformations. The
quotient space 53, with the quotient topology, has the structure of a Banach
manifold. Details for this theorem in dimension 4, which do not differ
significantly for the case of dimension 2, were worked out by Parker [30], based
on analogous questions for connections alone [27, 7],

The self-duality equations,

F04) + [<*>,<*>*] = 0, 1
d^ = 0, J

are in this context the zero set of a smooth section of a vector bundle over S8. In a
local coordinate system defined by a slice, this section is defined by the function

/ : ker d^-* Q2(M ; ad P) 0 Q2(M ; ad P ® C),

f(A, * ) = (F(A) + [<D, O*], dAm).
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At A =A0, the derivative of/is the linearized operator d2 of the elliptic complex
(5.3) restricted to kerrff. We showed that ker(^2 + d1) = 0 and so using elliptic
regularity, we see that dfAo is surjective as a Banach space transformation. Using
the Banach space implicit function theorem, we deduce that the zero set of/ is a
smooth submanifold of the slice of dimension 12(g — 1).

We have thus seen that the points on which the group ^ of gauge
transformations acts with trivial isotropy subgroup form a smooth manifold. We
now have to distinguish between U(2) and SO(3) gauge transformations in order
to be able to consider the global structure of the moduli space. From Proposition
(3.15) the group % of U(2) gauge transformations with unit determinant acts on
stable pairs (V, O) with isotropy ±1. Hence taking <$ = %l±\ acting on pairs
{A, O) of solutions to the self-duality equations, where A is a connection on the
vector bundle V, gives a smooth moduli space. On the other hand, if we use
SO(3) gauge transformations, we will necessarily encounter non-trivial isotropy
subgroups even restricting to stable pairs, as follows.

The basic example of this is to consider the moduli space Jf of stable rank-2
bundles with fixed determinant and odd degree. This (see [5]) is a compact
smooth projective variety with c1>0. By Kodaira's vanishing theorem
Hp(Jf, O) = 0 for p >0, whence the Todd genus is 1. If G is a finite group of
biholomorphic transformations acting freely on Jf, then c^Jf/G) > 0 and so the
Todd genus of Jf/G is similarly 1. As pointed out by Kobayashi, this contradicts
the multiplicativity of Todd genus and so G must have fixed points.

In the particular case of the moduli space Ji, the action of tensoring a stable
bundle V by a line bundle L of order 2 gives an action of Z^. Hence for each
such line bundle there must be a fixed point, i.e. a stable bundle V such that
V = V <8> L. The corresponding projective bundles are identical, so using the
theorem of Narasimhan and Seshadri, we have a flat SO(3) connection with a
non-trivial automorphism: the connection is reduced to O(2) and so the group of
SO(3) gauge transformations has non-trivial isotropy.

For this reason we shall find it more convenient to use the moduli space
corresponding to connections on the vector bundle V rather than the associated
principal SO(3) bundle.

In fact, if the SO(3) connection reduces to O(2), the bundle End0 V
decomposes as

End0 V = L®U,

where L is a flat line bundle of order 2, and U a real rank-2 bundle, and then the
only Higgs fields invariant by the non-trivial automorphism are obtained by
taking a holomorphic section of LK on M. We then always have [4>, <£*] = 0 and
hence F = 0, so that the 0(2) connection is flat also.

We consequently obtain the following theorem.

THEOREM (5.7). Let V be a rank-2 vector bundle of odd degree over a compact
Riemann surface M of genus g > 1, and let M be the moduli space of solutions to
the self-duality equations on V, with fixed induced connection on A2V. Then M is
a smooth manifold of dimension 12(g — 1).

Proof If V has odd degree, there are no solutions reducible to U(l); hence ^
acts freely.
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The existence theorem (4.3) yields the corresponding algebro-geometric result:

THEOREM (5.8). Let M be a compact Riemann surface of genus g > 1. The
moduli space of all stable pairs (V, 3>), where V is a rank-2 holomorphic vector
bundle of fixed determinant and odd degree, and & is a trace-free holomorphic
section of End V <8> K, is a smooth manifold of real dimension \2(g -1).

Clearly we expect the moduli space to be a complex manifold of dimension
6(g - 1 ) . Actually, much more is true as we shall see on considering the natural
metric on M in § 6.

6. The Riemannian structure of the moduli space

From its very definition, the tangent space at a point m of M is naturally
isomorphic to the vector subspace W of Q\M ; ad P) © Q10(M ; ad P <8> C)
consisting of all (A, 6 ) such that

d*AA + Re[O*, <i>] = 0,

(6.1)

for a representative (A, <I>) of m. The last equation is d\(A, <j>) = 0, which means
that the space is orthogonal in L2 to the orbits under the group of gauge
transformations.

Now the space i x Q = s&(M ;adP) x Q10(M ;adP<8>C) has, as we saw in
§ 4, a natural Kahler metric

= 2/ [ Tr(V*V + * * * )> (6-2)

where we identify Q\M ; ad P) with the complex space Q01(M ; ad P 0 C). Thus
W has a natural induced inner product which, since it is invariant under the action
of the group of unitary gauge transformations, induces an inner product on the
tangent space at m. Thus the moduli space M has a natural metric.

THEOREM (6.1). Let M be a compact Riemann surface of genus g>l and M the
moduli space of solutions to the self-duality equations on a rank-2 vector bundle V
of odd degree. Then the natural metric on M is complete.

Proof. Assume M is not complete. Then there exists a geodesic y(s) of finite
length, i.e. if y is parametrized by arc length, {se[R| y{s)eM) is bounded
above, with supremum s, say. Now let M <= si X Q be the Banach submanifold
consisting of all solutions to the self-duality equations. This is a principal
•^-bundle over M. The curve y(s) may be lifted to a horizontal curve y(s) in M.
This follows from the existence theorem for differential equations in Banach
spaces (see [22]).

By definition of the metric, the length of y from s = s0 to s = sn is the same as
the length of y, that is, \sn —so\, which is bounded above. This length is greater
than or equal to the straight line distance in the metric (6.2).
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Hence we have a bound

\\A(sn) - A(so)\\h+ ||O(5n) - *(so)\\b*M

as sn - » s .
In particular,

l|O(5n)||L^MU||Ofe)IL2. (6.4)
However, from (4.17) this gives an L2 bound on [3>, <E>*] and hence F(A(sn)).

By Uhlenbeck's theorem, after applying gauge transformations (which do not
alter y(sn) € M), we may take (A(sn), 3>(O) to converge weakly in L\ to a
solution {A, O) of the self-duality equations.

If w2^0, this can never be reducible to U(l) and therefore corresponds to a
point m in the manifold M.

Considering the continuous projection onto the slice at (A, O), which is a
finite-dimensional vector space, we see that the weakly convergent sequence
becomes a sequence converging to (A,<&).

Hence y{sn)->m in the topology of M. Standard differential geometric
arguments (see [14]) show this to be a contradiction.

The natural metric on M is a very special one—it is a hyperkdhler metric.
Recall that a hyperkahler metric on a 4n-dimensional manifold is a Riemannian
metric which is Kahlerian with respect to three complex structures /, / , K which
satisfy the algebraic identities of the quaternions:

Corresponding to each complex structure is a Kahler form:

, Y) = g{IX, Y), co2(X, Y) = g{JX, Y), co2{X, Y) = g(KX, Y),

and furthermore this set of symplectic forms determines the metric uniquely. It is
the symplectic aspect of the self-duality equations which leads to the fact that the
natural metric is hyperkahlerian.

We have already seen this in the approach to the existence theorem (4.3).
There, the equation

F + [<*>, <*>*] = 0

was interpreted as the zero set of the moment map corresponding to the action of
the gauge group ^ on the Kahler manifold i x Q with Kahler metric (6.2).

We shall now interpret the other half of the self-duality equations

in terms of moment maps.
To see this, note that the tangent space to si x Q at (A, O) is naturally

Q°'l(M ; ad P <g> C) 0 Q10(M ; ad P <g> C).
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We define a complex symplectic form (o on this space by

- *i^2). (6-5)

Since this has constant coefficients, it is clearly a closed form on the affine space
i x Q . Let f e Q°(M ;adP) be an infinitesimal gauge transformation; then it
defines the vector field X = Q¥lt Oj) on si x Q by

Consequently, by (6.5),

(A0'\ 4>) = f Tr(-[<D, i//]i0>1 + 6 ^ V)

= df(A°'\<b),
where

/ =

Hence d^O = 0 is the zero set of the moment maps of the two symplectic forms
given by the real and imaginary parts of co, with respect to the natural action of
the group ^ of gauge transformations. Call these forms (o2 and w3 and the Kahler
form of the metric (6.2) co1. Then colf <o2) co3 are the Kahler forms for a flat
hyperkahler metric on i x f i . This is easy to see because they all have constant
coefficients.

Furthermore, if JUJ, ju2, and JU3 denote the corresponding moment maps with
respect to ^, then the self-duality equations are given by

lii{A, 3>) = 0, where 1 ^ i ̂  3,lii{A, 3) 0,

and the moduli space M is the quotient

(6.6)

It is a theorem, in finite dimensions [17, 18], that the natural metric on the
quotient in this sense (a generalization of the Marsden-Weinstein quotient in
symplectic geometry) of a hyperkahler manifold is again hyperkahler. We shall
adapt the proof slightly to deal with the present situation:

THEOREM (6.7). Let M be a compact Riemann surface of genus g > 1 and M the
moduli space of irreducible solutions to the SO(3) self-duality equations. Then the
natural metric on the 12(g - l)-dimensional manifold M is hyperkdhlerian.

Proof. Let A' be a tangent vector in ^ x Q , tangent to the submanifold M of
solutions to the self-duality equations. Then, in terms of the moment maps JUJ,
pL2, and JU3,
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Thus by the definition of the moment map,

g(IX, Y) = g(JX, Y) = g(KX, Y) = 0

for all vectors Y tangent to the orbit of CS, where /, / , K are the constant complex
structures on i x Q . Thus IX, JX, and KX are orthogonal to the orbit. Clearly,
then, the horizontal space W is preserved by /, / , and K.

Since /, / , K are also preserved by (S, we see that the tangent space at a point
meM admits an action of the quaternions, compatible with the metric. Call such
a structure an almost hyperkdhler metric.

We need to prove the integrability of /, / , K and then the closure of colt co2,
co3, but fortunately these can be treated together in the following lemma.

LEMMA (6.8). Let g be an almost hyperkdhler metric, with 2-forms (ox, (o2, (03

corresponding to almost complex structures I, J, K. Then g is hyperkdhler if each
ft), is closed.

Proof. First note that

co2(X, Y) = g(JX, Y) = g(KIX, Y) = a>3(IX, Y)

and hence

3. (6.9)

If X is a complex vector field, then it follows that IX = iX if and only if
i(X)co2 = i(i(X)a)3). We wish to show first that / is integrable, so suppose IX = iX
and /y = iy. Then

, Y])co2 = <ex(i(Y)co2)-i

= <ex(i(i(Y)co3)) - i(Y)<exco2 (from (6.9))

= 2x(i(i(Y)a)3)) - i(Y)d(i(X)a)2) (since dw2 = 0)

= <ex(i(i(Y)co3)) - i(Y)d(\(i(X)co3)) (from (6.9))

= <ex(i(i(Y)(D3)) - i(i(Y)2xco3) (since d<o3 = 0)

= i(i[X, Y]co3).

Hence, from (6.9),

] = i[X, Y],

so by the Newlander-Nirenberg theorem / is integrable. Since da>1 = 0, g is
Kahler with respect to /.

Repeating with J and K, we obtain the lemma.

Returning to the theorem, note that if dfit(X) = 0, then by the definition of the
moment map, <Dj(X, Y) = 0 for all Y tangent to the ^-orbit. Hence if ft>, denote
the 2-forms obtained from /, / , K on M, then

where p: M—> M is the projection.
Since dcDj = 0, /?*dd>, = 0 and thus, since p is a fibration, deb, = 0.
Therefore 6), are all closed, and from (6.8) the metric on M is hyperkahlerian.
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There is one more piece of Riemannian information to note. If (A, $ ) is a
solution to the self-duality equations

F + [<D, <D*] = 0,

then clearly so is (A, e'e&) for a constant 6. Moreover, this action of the circle
preserves the metric g of (6.2) and thus acts as isometries on M. It preserves the
standard complex structure / o n ^ x Q , but not the other two complex structures
/ and K since it does not leave the complex symplectic form (6.5) invariant.

Since the action preserves the equations, and commutes with the action of the
group of gauge transformations, it descends to a circle action on M, acting by
isometries of the natural metric. Since it preserves the Kahler form d>a, it has a
moment map \i, which we may calculate on si x Q.

The vector field generated by the action is

( i » = (0,iO).
Hence

i(X)co1(Y)=g(IX, Y) =g(-4>, Y) = -\dg{<t>, *)(Y).

Thus the moment map for the action is — \ ||O|||2. We shall use this function next
to analyse the topology of the moduli space.

7. The topology of the moduli space

We consider the manifold M, the moduli space of solutions to the self-duality
equations on a rank-2 vector bundle V of odd degree. From the complex
structures /, J, K put on M the complex structure / invariant by the action of the
circle (A, ®)^>(A, el6&). This is the natural complex structure which M inherits
under its interpretation through Theorem (4.3) as the moduli space of stable pairs
(V, O), where V is a rank-2 vector bundle of odd degree and fixed determinant.
We shall investigate the algebraic topology of M using the Morse function

The method is due to Frankel [10] (see also [5]), and uses the fact that, since by
(6.10),

d\i = -2i(X)(ou

the critical points of /x are the fixed points of the circle action generated by the
vector field X.

PROPOSITION (7.1). The function ju = ||3>|||2 on M has the following properties.
(i) fi is proper.
(ii) /i has critical values 0 and (d — \)n where d is a positive integer less than or

equal to g — 1.
(iii) /^(O) is a non-degenerate critical manifold of index 0, and is

diffeomorphic to the moduli space of stable rank-2 bundles of odd degree and fixed
determinant over M.

(iv) n~x((d — 2)n) is a non-degenerate critical manifold of index 2{g + 2d — 2),
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and is diffeomorphic to a 22g-fold covering of the (2g-Id- \)-fold symmetric
product S^'^'^M of the Riemann surface. The covering is the pull-back of the
covering Jac(Af)-» Jac(M) given by JC•—>2JC under the natural map S^'^^M-*
Jac(M) which associates to a (2g — Id — \)-tuple of points of M its divisor class.

Proof, (i) From (4.17), if jit ̂ k, we have an L2 bound on the curvature F of
the solutions to the self-duality equations in JU-1[O, /:].

Using Uhlenbeck's theorem, note that any infinite sequence in /T^O, k] has a
convergent subsequence; hence JU-1[O, k] is compact.

(ii) As remarked above, the critical points of ju are the fixed points of the circle
action

induced on M.
Clearly $ = 0 is a fixed point and this occurs if and only if p = \\Q>\\h = 0. The

self-duality equations then become

and thus, by the theorem of Narasimhan and Seshadri, fi~l(0) is the moduli space
of stable holomorphic vector bundles of rank-2 and odd degree.

There are no more fixed points on the space i x Q but we must remember that
we are considering the circle action on the quotient space by the group of gauge
transformations. Thus (A, O) represents a fixed point if there are gauge
transformations g(d) such that

-4' I (72)

If <J>^0, then g(d) is not the identity for d^lkn, and so the second equation
implies that A is reducible to a U(l) connection. This means that the associated
vector bundle V is decomposable:

V = L® L*A2V.

Since g(6) is diagonal with respect to this decomposition, from (7.2), <£ must be
lower triangular with respect to one ordering of the decomposition. Let

<D = ( V where tf>eQ°(M;L-2/«:<8>AV).
\(p 0/

By the self-duality equation, (f> is holomorphic and F + [4>, <!>*] = 0. Thus, in
Q2(M;adP),

and in terms of the reducible connection on V,
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However, the degree of L is given by

M

K JM

= -
71

= ^ + ideg(A2V). (7.3)
it

Hence
deg L - i deg (A2V) = p/n > 0.

Thus [A is of the form
[i = n(d- \)

for an integer d 5= 1. By stability (see Remark (3.12)),

deg(L2®A2V*)«s2g-2
and so

d - \ = deg L - \ deg A2V ^ g - 1;
hence d^g-1.

(iii) The non-degenerateness of the critical submanifolds follows from their
description as the fixed point set of a circle action. Also (see [5, 21]), the index of
the critical submanifold Y is equal to the real rank of the subbundle N~ of the
normal bundle of Y on which the holomorphic circle action acts with negative
weights.

In the case of /^(O) this is necessarily zero, since 0 is an absolute minimum for
JU. We have already seen that the critical submanifold is the moduli space of
stable bundles.

(iv) From Theorem (4.3) and the above description of the critical set
li~x{{d — \)n), this is diffeomorphic to the moduli space of stable pairs (V, O)
where V = L © L*(l), L being a holomorphic line bundle of degree d, and 0(1)
a fixed line bundle of degree 1, and O determined by <p e H°(M ; L~ZK(1)).

The zero set of 0 is thus a positive divisor of degree 2g -2d-l on M.
Conversely, given a positive divisor of degree 2g — 2d — 1 in M, we obtain a
holomorphic line bundle U of degree Id, with a section of U~lK{\) vanishing on
the divisor. There are 22g choices of line bundle L of degree d such that L2 = U.

However, each such choice gives a stable pair (V, <£>). Moreover, since
deg L > deg(L*A2F), L is uniquely determined by the complex structure of V: it
is the canonical subbundle of a non-semi-stable bundle. Thus this is the only
choice for the complex structure of V.

The section <f> is determined up to a non-zero constant multiple by its divisor,
but the diagonal action of C* on V,

A(a, b) = {la, X'xb),

takes 0 to X2(p and so (V, <E>), (V, A23>) are in the same orbit under the group of
automorphisms of V and hence the corresponding solutions of the self-duality
equation are, from Theorem (4.3), gauge equivalent.
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We have shown, then, that the critical set n~l{{d-\)jz) is isomorphic to a
covering of the space of positive divisors on M of degree 2g-2d- 1, or, in other
words, to a covering of the (2g -2d- l)-fold symmetric product of the surface M
with itself.

To calculate the index of the critical submanifolds, we make use of the
holomorphic symplectic structure on M determined by the complex symplectic
form ft) of (6.5), or alternatively, in terms of the hyperkahler structure on M, the
form ft>2 + 'fl>3 which is holomorphic with respect to the complex structure /.

By the definition (6.8) the submanifolds of si x Q obtained by fixing A e si and
varying only O e Q10(A/ ; ad P <8> C) are isotropic with respect to co.

From Theorem (4.3), the open subset U c H°(M ; End0 V ® K) of Higgs fields
3> which are stable with respect to the complex structure d"A is acted upon freely
by the group Auto V of holomorphic automorphisms of V of determinant 1,
modulo ±1, and the quotient is a complex submanifold of M. Its dimension is

dimc H°(M ; End0 V ® K) - dimc Aut0 V

= dimc H\M ; Endo V) - dimc H°(M ; End0 V) (by Serre duality)

= 3g — 3 (by the Riemann-Roch theorem).

Hence, through each point of M, there passes a (3g — 3)-dimensional isotropic
complex submanifold consisting of the equivalence classes under Auto ^ of stable
Higgs fields <I>. The submanifold is clearly invariant under the circle action. Since
dimc M = 6g — 6, this is the maximal dimension for an isotropic submanifold
which is thus a Lagrangian submanifold. Consequently M is foliated by
Lagrangian submanifolds. We shall deal more closely with the symplectic
structure of M in § 8. For the moment we note that we have found in each
tangent space Tm to meM, a distinguished (3g — 3)-dimensional subspace
W a Tm, isotropic with respect to co and such that

W s H°(M ; Endo V ® K)/H°(M ; Endo V) . <*>,

where H°(M; End0 V). $ denotes the subspace of Higgs fields of the form
[\p, 0], for v e H°(M ; End0 V).

Now let m be a fixed point of the circle action, so that

o)'
Then the circle action arises from the gauge transformation

,-tea Q

0 em

Now End0 V = L"2(l) 0 L 2 (- l ) 0 O as a holomorphic vector bundle, and g(d)
acts, relative to this decomposition, as (e'e, e~'e, 1). Thus the subspace
H°(M ; End0 V <8> K) on which g(0) acts with negative weight is

H°(M ; L2(-

Since deg(L2(-l)) = 2d - 1 > 0, we have

dimcH°(M ; L\-l)K) = g + 2d-2. (7.4)



96 N. J. HITCHIN

Since the circle acts with only these weights on H°(M ; Endo V) and acts on O as
eie, there are no negative weights in H°(M ; Endo V). 3>.

Now since W is isotropic,

TJW = W*. (7.5)

The symplectic form co is not, however, invariant under the circle action, but
from its definition (6.5), it transforms as

Consequently, the weights {ei9, e ie, 1) of the action on W become

e'a(e-'V',l) = (l,e2'Vc)
on W*. In particular, there are no negative weights; hence (7.4) gives the
dimension of the negative subspace of Tm. Note that from this description the
subspace of Tm on which the circle acts trivially has dimension

dim H°(M ; K) - dim H°(M ; L2(-l)) + dim H°(M ; L~2{\)K) - dim H°(M ; O)

= g-(2d-g)-l = 2g-2d-l,

by Serre duality and the Riemann-Roch theorem. This of course checks with the
dimension of the critical submanifold. We have thus calculated the indices of the
critical points, which are 2{g + 2d — 2).

Using this analysis we now prove the following theorem.

THEOREM (7.6). Let M be the moduli space of stable pairs (V, <I>) where V is a
rank-2 bundle of odd degree over a Riemann surface M of genus g>l, and
O e H°(M ; Endo V ® K). Then

(i) M is non-compact,
(ii) M is connected and simply connected,
(iii) the Betti numbers bt of M vanish for i > 6g — 6,
(iv) the Betti numbers are given by

1)28~2 - ( l -

Proof, (i) The highest critical value of \i is, from Proposition (7.1), when
d = g — 1. The index is then 6g — 8 and the nullity 2 from (7.1)(iv). However,
since dimR M = 12g — 12, p cannot be a maximum. Hence fj, has no maximum at
all, so M is non-compact.

(ii) From [5] the minimum ju"1^) is connected and simply connected. Since
the indices of all critical points are even, it follows as a standard result of Morse
theory that M itself is connected and simply connected.

(iii) To calculate the Betti numbers of M, we use the fact [5, 21] that the
Morse function arising from a circle action on a Kahler manifold is perfect. This
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implies that if Pt(M) = £ btt
l is the Poincare" polynomial of a manifold, then

2V (7.7)

where the summation is over the critical submanifolds N, with index XN.
From (7.7) we see that

P<{M) = E1 t28+4d-4Pt(Nd) + Pt(N0),

where Nd are the critical submanifolds. Since dimR No = 6g — 6 and dimK Nd =
Ag — Ad — 2, it is clear that P,(M) is a polynomial of degree 6g — 6 and hence
bi = 0 if i > 6g - 6.

To compute the Betti numbers more explicitly, we use the result of Newstead
[29] or Atiyah and Bott [5] for No the modulo space of stable bundles of rank-2,
odd degree, and fixed determinant. The Poincar6 polynomial is there shown to be

(1 + f\2g _ ,2g/i , f\2g

(78)

The other critical submanifolds are coverings of symmetric products of the
Riemann surface M. The Poincar6 polynomial of a symmetric product was
computed by Macdonald [23]:

(1 + xt)2g

R(SnM)is equal to the coefficient of x" in , WH —57. (7.9)
v ' M (l~x)(l~xt2)

Consider now the 22g-fold covering S"M of SnM, induced by the map

This covering is a principal Z2
g bundle over SnM, and so by the Leray sequence,

2?s

Hp(SnM, R ) s 0 Hp(SnM ; % ) , (7.10)

where J% is the sheaf of locally constant sections of the flat line bundle of order 2
over S"M corresponding to the Z2-homomorphism (xt\ Z^—»Z2, for 1 ^ i =s 22s.

Now let Mn denote the n-fold Cartesian product of M and / : M"-»S"Af the
projection map. If £ e H\Jac(M), Z) = H\M, Z) then (see [23]),

f*/*f = £<g)l<g)... ® l + l ® £ ® l ® . . . ® l + . . . + l ® l ® . . . ® £

as an element of Hl{Mn, Z) = ©"= i H
l{M, Z) in the Kiinneth decomposition.

Thus given a flat line bundle of order 2 over Jac(M), this corresponds to an
element in Ha(Jac(M), Z2) = H\M, Z2) and hence a line bundle L, of order 2
over M which pulls back to Mn to give the bundle

L,<8>L,®L,®...®L, over AT = Af x M x ... x M. (7.11)

From (7.10) we need to compute Hp(SnM ;«££•) which is the £„-invariant part of
Hp(Mn ; «2J) where J% is the sheaf of locally constant sections of the flat line
bundle in (7.11). If L, is trivial, this is just the ordinary cohomology of S"M which
is given by Macdonald's formula, so suppose L, is non-trivial. Then

H°{M ; ^ ) = 0
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and hence by duality

# 2 ( M ; i Q =

By the index theorem, it follows that

Now consider the fibration

and apply the Leray spectral sequence to the sheaf S6( of constant sections of the
line bundle in (7.11). Since only HX{M, i£) is non-zero, the spectral sequence
degenerates and

Hp(Mn ; %) = H\M ; %

and hence by induction

Since elements of Hl(Mn ; 56t) anti-commute, the symmetric part of Hn(M"; J%),
which is isomorphic to Hn(SnM; 2t), is the alternating part of ®nH\M\gf),
that is,

Hn{SnM ; Set) = AnH\M ; %).

Consequently from (7.1) we obtain the following Betti numbers of SnM:

bk(S
nM) = bk(S

nM) if k * n,

bn{SnM) = bn(S
nM) + (22* - l ) ( 2 g ~ X ) . (7.13)

Thus from (7.1) and (7.7) the contribution to the Poincare polynomial of M from
the non-minimal critical submanifolds is

2g — 2d —

The second term is easily evaluated to be

tfs~2 - (1 - tfs~2). (7.14)

The first term, using the Poincare" polynomial for a symmetric product (7.9), gives
the coefficient of x2g in

V ,2(g+2d-2) 2d+l (1 + Xt)
( l ) ( l 2 ) -

This is clearly the coefficient of x2g in the infinite sum

V f2(e+2d-2) 2d+l (1+Xt)

d% (l-x)(l-xt2)

which equals .

2t4)'(l-x)(l-xt2)(l-x2t4)
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We therefore require the residue at x = 0 of
2*f2g

The rational function f(x) has, apart from x = 0, simple poles at x = 1 and
x = -t~2 and a double pole at x = t~2. Moreover, as x-* °°,

Hence, by Cauchy's residue theorem, the required residue is also

& (* 1)(«2 1)2(»2+i)^2s"2 •

At the simple pole x = 1, we obtain

/2g/i i t\
28

_ _ # - 2At the simple pole x = - r 2 , we obtain

At the double pole x = t 2, we obtain

2(1-t2) 1 (1 + 0 2 ( 1 -

Hence, from (7.8), (7.14), (7.16), (7.17), and (7.18),

(1 +13)28 t4g-\l - 02g

Pt(M) =(1 - t2){\ - t4) 4(1 + t2)

\ \ + t)28-\t2 - At
+( 1 - 0 ' 4 ( 1 - 0 2

i)^"4{( i + o2fi"2 - (i - 02g"2},

which reduces to

;'! S i < ^ + ^ + ' ) "

(7-16)

r ( l r )
Res = —^ ^ - . (7.17)
=-»-* 4(1 + r2)

+ "L" '̂f- (7-18)

- (g - 1)A"3 ( 1 | ^ g + 22*-Y*-4{(l + 02g"2 - (1 - 02g"2}-

EXAMPLE. In the case of a surface of genus 2 we simply have

= 1 + t2 + At3 + t4 + t6 + t\l + 3At + t2)

= 1 4-12 + At3 + It4 + 34f5 + 2t6.



100 N. J. HITCHIN

8. The symplectic structure of the moduli space

In the course of the proof of Proposition (7.1) we made use of the holomorphic
symplectic structure on M, the moduli space of stable pairs (V, O). We saw there
that M has a natural polarization, i.e. a foliation by Lagrangian submanifolds
each of which is obtained by fixing the equivalence class of the complex structure
and allowing <£ to vary.

In the case where V is a stable vector bundle, there are no non-trivial
automorphisms, and the leaf of the foliation is just the vector space
H°(M ; End0 V 0 K). This is canonically dual by Serre duality to the tangent
space Hl(M ; Endo V) of the moduli space Jf of stable vector bundles of fixed
determinant and so we find the cotangent bundle T*Jf embedded as an open set
in M. It is not difficult to see that the complex symplectic form w is the canonical
form on the cotangent bundle. It is however hard to visualize the symplectic
manifold obtained by adjoining further leaves of the foliation and extending the
symplectic form.

We prefer here to consider the symplectic structure from another point of view,
producing a polarization on an open set which is transverse to the one described
above. For this we consider the gauge-invariant map

(A, <t>)^>det<f>

which clearly defines a holomorphic map

det: M-+ H°(M ; K2).

THEOREM (8.1). Let M be the moduli space of stable pairs (V, 3>) on a Riemann
surface M of genus g>\, where V is a vector bundle of rank 2 and odd degree,
with fixed determinant and O e H°(M ; Endo V ® K). Then the map

det: M

satisfies the following properties:

(i) det is proper;

(ii) det is surjective;

(iii) ifau..., <*3g-3 ^ a basis for H°(M ; K2)* = H\M ; K~l) then the functions
fi = or,-(det) commute with respect to the Poisson bracket determined by the
holomorphic symplectic structure of M;

(iv) if q e H°(M ; K2) is a quadratic differential with simple zeros, then
det"1 (q) is biholomorphically equivalent to the Prym variety of the double
covering of M determined by the 2-valued differential y/q.

REMARKS. Since dimc M = 6g - 6 = 2 dime H°(M ; K2), the third part of the
theorem says that M is a completely integrable Hamiltonian system. The
Hamiltonian vector fields corresponding to the functions / then define linearly
independent commuting vector fields on each regular fibre. Since det is proper,
each component of a regular fibre is thus automatically a complex torus. Part (iv)
identifies this torus as the Prym variety. Recall that if M is a double covering of
M with involution o: M-*M interchanging the branches, then the Prym variety
is the subvariety of the Jacobian of M on which o acts as - 1 .
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Proof, (i) From (4.18) we have the inequality

Wnh^c. + J |detO|2
JM

and from (4.17),

Hence if ||det O|| =s M in the finite-dimensional vector space H°(M ; K2), then we
have an L2 bound on F(A) for all corresponding solutions of the self-duality
equations. By Uhlenbeck's theorem, as used in Theorem (4.3), every sequence in
det~1(fiAf(0)) has a convergent subsequence and hence det is proper.

(ii) The Poisson bracket of two functions on a symplectic manifold is defined
by

where Xx is the Hamiltonian vector field corresponding to/x, that is,

Now let (Xi e H\M ; K'1) be represented by forms ft e Q01(M ; K~l). Then
2ft det 3> = - f t Tr 3>2 is an element of Q01(M ; K) and the functions ft = 2tf,(det)
may be expressed as

/, = - [ ftTrO2. (8.2)

The complex symplectic form on si x Q is defined from (6.5) as

t - ^ W a ) . (8.3)= f
As noted in § 6, the moment map for the symplectic action of the group W of
complex automorphisms of adP<8>C with respect to this complex symplectic
structure is

p(A, 3>) = d"A<& e QM(M ; ad P ® C).

The form a> is degenerate along the orbits under cic, and for this reason
descends (the Marsden-Weinstein quotient) to a form on the quotient, which is
the symplectic form under consideration here.

We may take then a tangent vector {A, <j>) in si x Q, tangent to d'^ = 0 to
represent a tangent vector Xt on M, and use the symplectic form (8.3) for
computations. Thus,

= f (8.4)

But from (8.2),

dfi(B>^) = -2\ ftTr(<D«>).
JM

Hence from (8.4) we may represent the vector field Xt on M by the field in
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( i » = (-2A<D,0). (8.5)

Since 6 = 0,

and so the functions Poisson-commute.
(iv) Let (V, O) be a stable pair with

det$ = -qeH°(M;K2)

and suppose q has simple zeros. In the total space of the canonical bundle KM of
M we consider the subvariety

M = {axeKx\ ax = q(x)eK2
x}.

If q has simple zeros, M is a non-singular Riemann surface with an involution:

a: M^M, o(ax) = —ax.

By the Riemann-Hurwitz formula, the genus of M is

l = 4 g - 3 . (8.6)

Let p: M-*M denote the projection, a double covering branched over the zeros
of q. Then by the definition of M, yjq defines a holomorphic section of p*KM on
M. Pulling back the vector bundle V to M, we have O defining

6 e H°(M ;p*(Endo V <g> KM)).

However, since

we have two rank-1 subbundles of p*V defined by

Lx <= ker(<f> + V?), L2 c= ker(O - Vtf), (8.7)

which are clearly interchanged by the involution o. The two subbundles coincide
where q = 0; hence the holomorphic homomorphism

A: Lx®L2-^A2p*V

vanishes at the zeros of V<7 with multiplicity 1. Thus

Lx <g> L2 = p*(A2V) ®P*KM\ (8.8)

Since Lx and L2 are interchanged by o, we have from (8.8),

o{Lx) = LI ®p*(A2V <g> K~M
X). (8.9)

As p*(A2V <8> /C^1) is of even degree, p being a double covering, and invariant by
o, we may choose a fixed line bundle Lo such that

and then (8.9) becomes
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that is, Lx <8> LQ1 is a line bundle L of degree zero such that o{L) = L*, and this
gives a point in the Prym variety of M. Note that

dim(Prym M) = g - g = 3g - 3 from (8.6).

Conversely, suppose Lx is a line bundle on M with deg Lx - deg(A2V <8> A^1) and
such that Lx ® LQ l e Prym(M). The direct image p*Lx defines a rank-2 vector
bundle on M. The fibre of this bundle at x e M is by definition

where $P-\X) is the ideal sheaf of p~l(x). Considering the reduction of the divisor
p~\x) at the branch points x, we have a natural sheaf map

to a sheaf supported on the branch points. It is the direct image of the sheaf
OM{K%LI)I$R where R a M is the ramification divisor.

The kernel of this map is a locally free sheaf of rank 2, the sheaf OM(V*) for a
vector bundle V. By construction, there is a canonical inclusion of Lx czp*V, and
also since $p-\x) = $y • ^ay> a n inclusion of o{L{). Now o(L1)czp*V coincides
with Li at the fixed points of o: the branch points of the covering. It follows
directly that since LXLQX is in the Prym variety,

p*(A2V)^L0o(L0)®p*KM

and so all the vector bundles V constructed this way have the same determinant
bundle.

We may define

by <f>(w) = y/qv if v eLx and 4>(u) = — \/q for v e o{L]), and since this is
invariant by o, it descends to 3> e H (M ; Endo V <8> K).

Now if O left a subbundle LcV invariant, we would have <E>(u) = 6v for v e L
and some 6 e H°(M ; K). Hence (since Tr 4> = 0) we would have det O = —q =
— 62 which is impossible if q has simple roots. Thus the <I> constructed this way
gives a stable pair (V, O).

The variety {LeHl{M ; 0*): a(L) = L"1} is therefore mapped biholomorphi-
cally onto the fibre det"^—q).

(ii) As a consequence of the above, we have seen that any q e H°(M ; K2)
which has simple zeros is in the image of det. Since this is a Zariski open set,
det(^) is dense in H°(M ; K2). However, since det is proper, it must be
surjective.

It is instructive to consider the map det restricted to the open set T*N which
corresponds to stable pairs (V, <&) where V itself is a stable bundle since in
principle we have more explicit knowledge about Jf. We thus consider the bundle
V on M defined by the direct image of a line bundle Lx on M as in the theorem
and ask whether V is stable.

The bundle V will be unstable if and only if there exists a line bundle L c V
such that deg(L) > \ deg A2V. Let L denote the pulled back line bundle on lid.
Then

o*L = L. (8.10)
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Now if V is pulled back, it is described as an extension

A : V ) ^ 0 . (8.11)

Consider the exact sequence of sheaves

0^>L*Lx^>L*p*V-*L*Ll*®p*(A2V)^Q (8.12)

and its corresponding long exact cohomology sequence. Since, as in (8.9),

(remarking that M—>M is a double covering) and

degL>deg(AV)
we have

deg(L*L1)<-(2g-2)

and so H°(M ; L*LX) = 0. Thus the inclusion L<=/?*V maps to a non-zero
element of H°(M ; L*L\* ®p*(A2V)). This is a section of a line bundle on M of
degree

deg(L*L? ® p*(A2V)) < (2g - 2) = J(g - 1)

and thus defines a point in the space of special divisors W2g-3.
Suppose conversely that L is a line bundle on M, invariant under o as in (8.10)

and such that L*L* <8>p*(A2F) has a non-trivial section s. From (8.12) this comes
from a homomorphism from L to p*V if and only if s goes to zero under the
coboundary map

6: tf°(M i L ' L r ® / ? * ^ 2 ^ ) ) ^ / / ^ ; / ; * ^ )

which is the cup product with the extension class e in HX{M, L2®p*(A2V*))
which defines p*V in (8.11). However, p*V is an extension also by L2 = o*(Ll)
which means that the extension class e arises from the exact sequences of sheaves:

where D is the fixed point set of o. Thus

e = 6D(o*)

where o* e H°(D ; L*LX) is the isomorphism L2 = o*Ll restricted to the fixed
points of o, and

6D: H\D;L*2Lx)-+H\M;L2®p*{A2V*))

is the coboundary map for this sequence. (An analogous situation occurs in the
twistor description of monopoles [16].)

It follows that d(s) = 0 if and only if dD(o*s) = 0. Now o*s is a section of
L*L2 ®p*(A2V) on D and this maps to zero if and only if it restricts from a
section of the same bundle on M. However, since o*L = L and o*Lx = L2, the
action of the involution o on s gives just such a section.

Hence if L*L\ ®/?*A2V has a non-vanishing section, there is a homomorphism
from L to p*V which is in fact by construction a-invariant and hence defines a
homomorphism on M from L to V.

The points in the Prym variety which define unstable bundles on M are thus of
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the form

m~\W2g-3) H Prym M x {1}
where

m: Prym(M) x Jac(M) -> Jac(M)

is the natural multiplication map and W2g-3 <= Jac(M) is the (2g - 3)-dimensional
Space of special divisors corresponding to line bundles of degree Ig - 3 with a
non-trivial section. These unstable points are generically of codimension g in
Prym(M).

Reinterpreting this information we see that the generic fibre of

det: T*Jf^>H°(M;K2)

is non-compact and consists of removing a codimension-g subvariety from a
(3g — 3)-dimensional torus. We may thus regard M as a fibre-wise compactifica-
tion of the symplectic manifold T*Jf with respect to the function det.

This perhaps lends the space M a more natural algebro-geometric interpreta-
tion in terms of the more well-understood moduli space Jf of stable bundles.

The symplectic point of view may be taken further in different directions. We
shall consider one more aspect here. This is the formation of 'caustics' by the
Lagrangian submanifold Prym(M) c Ji. We consider the points of Prym(Af) at
which the polarization of M obtained by fixing the equivalence class of complex
structure on V is tangential. Restricting to T*Jfwe see that these are the points at
which the projection onto Jf is not a local diffeomorphism. The projection onto Jf
gives a subspace which is called a caustic. The singularities of projections of
Lagrangian submanifolds have been investigated in depth by Arnol'd [2].

For our purposes we merely wish to determine the locus of points in the Prym
variety at which the polarization has a tangential part. This is equivalent to
seeking a tangent vector X to M, tangent to the polarization by complex
structures, and such that

dfi(X) = 0 f o r l ^ * ^ 3 g - 3 ,

where t h e / are the functions in (8.1) which define the integrable system. Since
det 3> = — 2Tr4>2, this is more invariantly where Tr(3>i/;) = 0 for some 1/; e
H°(M ; End0 V <8> K).

Pulling back to M, we have p*V = Lx © L2 outside the fixed points of o and
with respect to this decomposition,

0 - A

Hence, if
'a b(a b\
\c —a)

then Tr(Oi//) = 0 if and only if a = 0. This implies that

£ * (8.13)

If this is true on M\D, it will of course be true elsewhere. Thus, there must exist
a non-zero section of L2LXKM or of L\L2K. In fact, applying o, we see that such
sections occur at the same time.
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Now since L2 = o*(L1), we have deg^Lx) = 0 and by the construction of M,
KM=P*(K2

M). Thus L2LXKM is a line bundle of degree g-\ on M with a
holomorphic section. Thus U = LXLQ e Prym(M) lies inf~1(Wi.l) under

defined by f(U)= U2KM. Thus in the moduli space M of SO(3) solutions, this
subvariety of the torus is the intersection of the theta divisor of fid with the Prym
variety.

Conversely, suppose there is a non-vanishing section s of L\LXKM and hence a
corresponding section o*s of L\L2Km. Consider the homomorphism

or:

induced by the inclusions of L1} L2 in p*V. There is an induced homomorphism

S2
a: S\Lx®L2)-*p*S2V

and consequently a homomorphism

0: EndoCL! 0 L2) = S\LX 0L 2 )L* x L^p* End0 V <8>p*A2V <8> LfLl

The homomorphism jS vanishes at the fixed point set of o which is a divisor D of
KM. If therefore (j> is a section of Endo(L10 L2)KM, then j3(0) is a section of

p* Endo F ®p*A2V <8> L?Lf ®KM=p* End0 V <2> A"L by (8.8).

This vanishes on D and hence defines a section of p*(End0 V <8> .KM). Putting

<p = s + o*s e H°{M ; E n d o ^ 0 L2)KM)

we obtain a a-invariant section of p*(Endo V ®KM) and hence a section t// of
End V ® # on M which by construction satisfies Tr(3>i//) = 0.

Thus the theta divisor is the locus of the singular points with respect to the
projection onto Jf, or more generally the foliation by complex structures of V.

9. The other complex structures

In § 6 we showed that the moduli space M possesses a natural hyperkahler
metric and hence complex structures /, / , K with respect to all of which the
metric is Kahlerian. In fact if x is a unit vector in U3, then

and we have a 2-sphere of complex structures.
All our investigations so far have, however, used just one of these structures, /,

which endowed M with the natural complex structure of the moduli space of
stable pairs (V, 3>). We shall now consider the other complex structures on M.

PROPOSITION (9.1). Let M be the moduli space of solutions to the self-duality
equations on a rank-2 vector bundle of odd degree and fixed determinant over a
compact Riemann surface of genus at least 2. Then

(i) all the complex structures of the hyperkdhlerian family other than ±1 are
equivalent,
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(ii) with respect to each such structure, M is a Stein manifold,

(iii) M has no non-constant bounded holomorphic functions.

Proof (i) First recall that the U(l) action on M defined by (A, 4>)-» (A, eie&)
preserves the symplectic form oyx but acts on the form w2 + i(03 as el6{a>2 + i<o3).
If X is the vector field generated by the action, then

-(o2. (9.2)

Now define a vector field X on M x S2 by taking the product action of the circle
on M and S2, regarding S2 as the space of covariant constant 2-forms
xlco1 + x2a>2 + x3a>3 of unit length acted on according to (9.2). Alternatively it is
the space of complex structures {/„ = xxl + x2J + x3K: x e S2} of the hyperkahler
metric.

The product manifold MxS2 has a natural complex structure / = (/x, Isi) which
is integrable (this is the twistor space of the hyperkahlerian structure [17,18, 31])
and the circle action preserves the complex structure.

The action projects under the holomorphic projection

p2: MxS2-*S2 = CP1

to the standard rotation leaving ±7 fixed. If we can show that the holomorphic
vector field on MxS2 generated by X extends to a C* action, then this must
cover the C* action on CP1 which acts transitively on the complement of ±7 and
hence will carry M with any complex structure apart from ±7 to any other, which
is what is required for (i). We must therefore show that the vector field JX is
complete.

Without loss of generality, consider an integral curve y(t) of the vector field
which projects as t increases to an integral curve of the vector field on S2 pointing
to +7. Now

dt
and

ef d t

where px\ MxS2^>M'\s the projection. The curve a(t) in M satisfies

" A '-<t)X,IX) = xx\\X\\2, (9.3)

and since xx(t) is increasing by assumption, we may assume for t> t0,

d
(9.4)

But from §§ 6 and 7, if ju = \\<f>\\2
L2, then

IX = — \ grad (x.

Hence from (9.4) we obtain, along the curve,

A,,

(9.5)
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Recall now from the proof of (6.3) that if l(t0, /x) is the length of the curve from t0

to tx, then

and thus

and hence

IWo)

|j**(fo)-***(/,

"T \f* )
^ds
^dt'

to, h)

,h),

Now

Thus from (9.5) and (9.6) we have

- r ^

Therefore

d\i

It and

dfi

It

It

(9.6)

(9.7)

(9.8)

AKfi.

4KtThus [i s£ ce4Kt. Consequently if a{i), with t e [0, ^) , is a maximal integral curve,
then ju is bounded on ar(f), but since fi is proper from (7.1), a{t) has a convergent
subsequence as t-*tx. From (9.7) and (9.8), da/dt is bounded as t->tx and hence
a(t) converges as t-* tx. Moreover from the differential equation da/dt converges
too. Hence, integrating the vector field in a neighbourhood of lim,..,,, a(t), we
obtain a contradiction to maximality. Thus every integral curve may be extended
to all values of t and the vector field is complete.

(ii) From (i) it is enough to consider the complex structure /.
Recall that/ = — 2ju is the moment map with respect to the symplectic structure

o)1 of the U(l) action. Hence

Now for a vector field Y,

whence

i(X)col = df.

df(JY)=-i(d'j-d'MY),

= ig(IX,JY)
= ig(KX,Y)
= i(i(X)co3)(Y).

In other words,

Thus
(9.9)

-2d'jd"jf = id(i(X)o)3) = \
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But from (9.2), ^£x
(°3 = —u>i> and hence

(O2= -2id'jd"jf. (9.10)

Thus what was a moment map for the Kahler form (o1 is now a Kdhler potential.
Since/is proper and a>2 is a Kahler form, /provides a strictly plurisubharmonic

exhaustion function for M with respect to the complex structure /. Thus M is a
Stein manifold.

(iii) Since a hyperkahler manifold has vanishing Ricci tensor, this follows from
a theorem of Yau [34].

REMARKS. (1) From (9.10) the Kahler forms co2 and <w3 are cohomologous to
zero. The form o)x is not, as it restricts to a Kahler form on No, the moduli space
of stable bundles and from (7.7) the restriction map H\M, M)^>H2(N0, U) = U
is an isomorphism.

(2) It is a consequence of being a Stein manifold that the Betti numbers bt

vanish for i > 6g — 6. We have already seen this of course in Theorem (7.6), using
the complex structure /.

To gain a more precise description of the complex structure / we consider its
effect on the infinite-dimensional hyperkahlerian manifold i x Q , from which
the structure on M was derived by a quotient construction. Recall that the
tangent space at a point of d is the space Q0 1(M; a d P ® C) and that of Q is
Q10(M ; ad P <8> C). Thus with respect to /, the tangent space to ^ x Q is the
complex space

Q0>1(M ; ad P <8> C) 0 Qh0(M ; ad P ® C).

The complex structure / may be defined by

J(A, B) = (iB*} -iA*)

and K by

K(A,B) = (-B*,A*).

Now define an isomorphism a: si x Q—»sd x s& by

<x{A, O) = (d"A + <*>*, d'A + 0>),

where dA = d'A + d"A is the covariant derivative of the unitary connection A. Then
the derivative of a is

da(A, B) = (A + B*, -A* + B)
and hence

da{J(A, B)) = da(iB*, -iA*) = (iB* + iA, iB - iA*) = ida(A, B).

Thus a identifies i x Q with complex structure / with the space si x si endowed
with its natural complex structure. An element of si x si is a pair (d", d'2) of
operators or equivalently d = d[ + d2 is a (non-unitary) PSL(2, C) connection.

Consider the self-duality equations

F(A) + [O, <*>*] = 0,
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under this isomorphism. Firstly,

thus the PSL(2, C) connection is flat. Secondly, using the unique unitary
connections dx and d2 compatible with d'[ and d'2> we have

= F(A) - [O, <£*] = -2[<D, <&*]
and

= F(A) - [<D, <*>*] = -2[O, O*].
Hence

FX = F2. (9.12)

Thus, instead of the holomorphic equation d"A® = 0 and the unitary condition
F(A) + [O, <$*] = 0, we have the holomorphic condition F = 0 for a complex
connection and the unitary condition Fx — F2. As a consequence of the self-duality
equations, we showed in Theorem (2.1) that the pair (V, <£) was stable; now we
have a similar stability condition for the complex connection d = d[ + d2. This is
expressed in:

THEOREM (9.13). Let (A, <I>) be a solution to the self-duality equations on a
compact Riemann surface. Then if (A, <P) is irreducible, so is the flat PSL(2, C)
connection d'A + d"A + <1> + O*.

Proof. Assume the flat connection d'A + d"A + <f> + O* is reducible. Then its
holonomy lies inside the upper triangular subgroup of PSL(2, C). Since this
preserves a 1-dimensional subspace of the Lie algebra of PSL(2, C), there is a
complex line bundle L contained in ad P ® C = W which is preserved by the
connection, and hence inherits a flat connection dL.

We first solve the equations Fx = F2 for a flat connection on the line bundle L
equivalent under non-unitary gauge transformations to dL = d[ + d2. To do this
take a gauge transformation of L given by multiplication by eu, with u e C°(M).
Then dL is transformed to

and if Fx, F2 are the curvatures of the unitary connections d[ + d'{, d2 + d2, then
the curvature Fx of the unitary connection compatible with d'x + d'u, that is,
d[ + dx' + d'u-d"u} is

Fx = Fx-2d'd"u. (9.14)

The curvature F2 of the unitary connection compatible with d'2 + d"u, that is,
d2 + d'i + d"u-d'u, is

F2 = F2 + 2d'd"u. (9.15)

Hence Fx = F2 is solved if we take

4d'd"u = FX-F2

which is clearly possible since Fx — F2 is cohomologous to zero.
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Now let soe Q°(M ;L*W) be the covariant constant section given by the
inclusion L c W . Then e~us0 = s is covariant constant with respect to a flat
complex connection on L*W which arises as a solution of the self-duality
equations on L*W. In other words, taking the tensor product of the given
connection W and the connection constructed above on L* we have a flat
connection d = d[ + d2 on L*W such that FX = F2.

Since d2s = 0, we have from (2.4),

f (d'2s,d'2s)=\ (F2s,s). (9.16)

But d[s = 0, and then we obtain analogously

f (d'[s,d'[s)=-\ {Fxs,s). (9.17)

However, if Fx = F2) we have

whence d'2s = 0 and d'[s = 0. This means that s is covariant constant with respect
to the unitary connections d\ + d'[ and d'2 + d'{. This implies that L g W is
invariant by the connections d'A + O + d"A - <I>* and d'A - O + d"A + O*. In par-
ticular, it is invariant by d'A + d"A and by <I> and <I>*. Thus the solution (A, O) of
the self-duality equations is reducible.

Note that an obvious repetition of the second part of the proof gives the
following proposition.

PROPOSITION (9.18). Let (d[, d'i) and (d[, d'i) be flat PSL(2, C) connections
arising as above from two irreducible solutions to the SO(3) self-duality equations
(A, 3>) and (A, <!>). Then if (d[, d^) and (d[, d'2) are equivalent under complex
gauge transformations, (A, <f>) and (A, <f>) are gauge equivalent under SO(3)
gauge transformations.

Proof Put the product connection on V <8>V* and apply the above argument
to the covariant constant section which is the complex gauge transformation.

Consider now what we have achieved by looking at the moduli space M from
the point of view of the complex structure J. We have seen that each solution to
the self-duality equations gives rise to a flat complex connection, and secondly
that a vanishing theorem implies that the connection is necessarily irreducible.
Compare this with what we did in § 2. There we considered the self-duality
equations from the point of view of the complex structure /, showed they gave
rise to a holomorphic vector bundle and a holomorphic Higgs field, and then used
a vanishing theorem to prove that the pair was stable. In § 4 we showed that every
stable pair arises in this way, and we may expect an analogous statement for the
viewpoint considered here: every irreducible flat connection arises from a solution
to the self-duality equations. This is the theorem of Donaldson [8], proved in the
paper following this one:
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THEOREM (9.19) (S. K. Donaldson). Let P be a principal SO(3) bundle over a
compact Riemann surface M. For any irreducible flat connection on Pc there is a
gauge transformation taking it to a PSL(2, C) connection A + ty where (A, ip)
satisfy the self-duality equations.

From Proposition (9.18) the gauge transformation is unique modulo SO(3)
gauge transformations.

As a consequence of Donaldson's theorem, we may identify the complex
manifold (M, J) as a moduli space of flat connections or representations of the
fundamental group. Recall that in order to obtain a smooth moduli space in § 5,
we had to use SU(2) gauge transformations modulo ±1 rather than SO(3) gauge
transformations. Similarly (Ji, J) is not the space of equivalence classes of flat
PSL(2, C) connections but is a covering instead. This can be described by using a
central extension of the fundamental group ?Ci{M), as did Atiyah and Bott in [5].

The group nx{M) is generated by 2g generators Ax, Bu..., Ag, Bg satisfying the
relation

[AhBH = l.

There is a universal central extension F,

generated by Aif Bit and central / subject to the relation Ilf=i [Ait Bt] =J.
Representations of F into SL(2, C) are of two types depending on whether the

central element l e Z c T goes to +1 or —1 in SL(2,C). In the first case the
representation is simply obtained from a homomorphism from F/Z = JZ^M) into
SL(2, C). The second case, the odd one is the situation giving rise to a flat
PSL(2, C) connection with non-zero Stiefel-Whitney class Wi, and this is the case
considered here arising from the self-duality equations on a bundle of odd degree.

Thus the complex manifold (Jt, J) is naturally identified with

Hom(F, SL(2, C))odd-ir7SL(2, C),

the quotient space of odd irreducible homomorphisms of F to SL(2, C) modulo
conjugation by SL(2, C).

The existence of this space as a smooth (6g — 6)-dimensional complex manifold
is already known [13]. By its very description in terms of matrices Ah Bh

satisfying II [Ait B{] = —1 it is an affine variety, in which case the conclusions (ii)
and (iii) of Proposition (9.1) are obvious. We include them however because they
are derived from very general considerations concerning hyperkahler manifolds.

Using Theorem (7.6) we deduce the next theorem.

THEOREM (9.20). Let F be the universal central extension of the fundamental
group of a Riemann surface of genus g by Z. Then the space

Hom(F, SL(2, C))odd>ir7SL(2, C)

is a smooth manifold which is connected, simply-connected, and has Poincare
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polynomial

(i + ;3)2* *4*-4[(i + t2)\i + tf* - (i + 1 ) \ \ -1?*\
K) ( l f 2 ) ( l f 4 ) 4 ( l f 2 ) ( l - * 4 )

K "2 - (i - o2 g"2o2g"2]-

Note finally that whereas the complex structure loiM depends on the modulus
of the Riemann surface (it contains as a fixed point set of the circle action a
holomorphic copy of the Riemann surface itself), the complex structure / depends
only on the fundamental group and is thus independent of the conformal
structure of M.

10. The real structure

We return for the moment to the moduli space M with its complex structure /.
We saw that 3>-»e'e<I> defined a circle action which preserved the metric and the
complex structure. Let o denote the action of - l e U ( l ) . Then a is a
holomorphic involution with respect to /. However, the action of the circle on the
holomorphic symplectic form o)2 + ico3 was given by eie(co2 + iw3). Thus

o*a)2= —co2,
o* co3

 = — co3.

Reverting now to the complex structure / defined by the Kahler form (o2 we see
that

°7,"J: w . , | do.1)
O*((01 + ICO3) = {(O1 - l(O3). J

Thus o is an anti-holomorphic involution (a real structure on (M, J)) taking the
holomorphic symplectic form o)x + ico3 to its complex conjugate.

We may investigate the real points of (M,J) (the fixed points of o) by
considering the action of o on (Jt, I) whose complex structure we know is given
by the moduli space of stable pairs (V, 3>).

Suppose then that the gauge-equivalence class of (A, <I>) is fixed by o. If the
pair (A, 4>) is fixed by o, then <£ = -<I> = 0, so we have the moduli space of flat
SO(3) connections. If not, then o acts as a gauge transformation which preserves
A, and hence A must be reducible to a U(l) connection: a direct sum connection
on a vector bundle

V = L® L*(A2V).

Now an element g e SO(3) of order 2 must be a rotation by JT which lifts to an
element of order 4 in SU(2). Thus o acts on V via a transformation of the form

"\0 -i)

with respect to the above decomposition. The action of this by conjugation on
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End0 V is
a b \
c -a)

a -b
—c —a

Hence a*O = —<P if a = 0.
Using this we obtain the following description of the fixed points of o.

PROPOSITION (10.2). Let (M, I) be the moduli space of solutions to the
self-duality equations on a rank-2 vector bundle of odd degree and fixed
determinant over a compact Riemann surface of genus g>l. If o is the involution
induced by (A, ®)*-*(A, —O) then the fixed points of o consist of complex
submanifolds MQ, M^-I (1 ^ d ^ g - 1) each of dimension 3g-3 where

(i) MQ is isomorphic to the moduli space of stable rank-2 bundles of fixed
determinant and odd degree,

(ii) MM-I is the total space of a holomorphic vector bundle E over a 22g-fold
covering of the symmetric product S2g~2d~1M. The bundle E is the pull back
to the covering of the direct image sheaf under projection of the bundle
U'^Klf over M x S^'^'^M where U is the tautological line bundle over the
product, i.e. the pull-back of the Poincare bundle on M x Jac2g~2d~1(M) via
the canonical map M x S^'^'M^M 2"

Proof. The argument follows directly the analysis of the fixed points of the
circle action as in (7.1). As discussed above, if (A, 3>) is fixed by o, then A is flat
and we have as a component of the fixed point set the moduli space of flat SO(3)
connections which may be identified with the moduli space of stable rank-2 vector
bundles of odd degree and fixed determinant. Otherwise, if the equivalence class
only is fixed, then we have a stable pair (V, <£) where

V = L®L*A2V

and deg L = d say, and with respect to this decomposition

* - ( ° n)
\c 0/

where b e H°(M ; L2K <8> A2V*) and c e H°(M ; L~2K ® A2V). Let
deg L - 1 deg A2V = d-±>0;

then by stability c =£ 0. Moreover, the group of automorphisms of V is C* which
acts on c by scalar multiplication. Consequently the W orbit of {V, 3>) determines
an effective divisor in the linear system L~2K ® A2V of degree

2g - 2 - 2d + 1 = 2g - 2d - 1

and hence a point x of S2g~2d~1M. The fibre over this point is the choice of b and
since

deg(L2# <g> A2V *) = 2g-2 + 2d-l

= 2g + 2d-3

>2g-2,
then

dim H°(M ; L2K® A2V*) =g - l + 2d-l



SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE 115

making the whole set of equivalence classes a vector bundle of rank g + 2d — 2
over S2g~2d~lM and hence a complex manifold of dimension 3g - 3.

The line bundle Ux = L~2K 0 A2V is the bundle of the divisor corresponding to
a point x of S28~2d~lM and the fibre over x is

H°(M ; L2K 0 A2V*) = H°(M ; U;lK2),

hence the description of E in the proposition.

REMARK. Topological properties of the bundle E over S28'24'1!^ may be
deduced by applying the Grothendieck Riemann-Roch theorem to

M X Jac28-2d-\M)

with respect to the projection

p: MxJac(M)-*Jac(M).

This gives
lK2). td{M x J{M))) = ch{p(U-lK2)). td{J{M)). (10.3)

Now

H\M ; U~lK2) = H\M ; L2K 0 A2V*) = 0

since deg(L2£ 0 A2V*) >2g-2, so

ch{p,(U-lK2)) = ch(E) where E=pifV~xK2

and therefore, since the tangent bundle of the Jacobian is trivial,

ch(E) =p*(ch(U-'K2)td(M)). (10.4)

Now (see [1]), c^U) = (2g — 2d — l)rj + y where r\ is the pull-back of the class of
a point on M and y e Hl{M, Z) 0 //1(Jac(M), Z) the canonical element. Hence

p*{ch{U-xK2)td{M))

= (g + 2d-2)-d,

where 6 e H2(Jac(M), Z) is the class of the theta-divisor.
Hence

ch(E) = (g + 2d - 2) - e. (10.5)

The Chern classes are then

ck{E) = {-lfdklk\.

These are in particular, as 6 defines a principal polarization, primitive classes in
H2k(Jac(M), Z). Now from [23], the cohomology homomorphism

Hr{SnM, Z)^>Hr{Sn-lM, Z),

induced by the inclusion S"~lM c S"M given by adding a fixed point, is an
isomorphism for O ^ r ^ n - 1 and injective for r = n — 1. Now SnM is a projective
bundle over Jac(M) for n > 2g = 2 and hence by the Leray-Hirsch theorem
H*(SnM, Z) is a free module over //*(Jac(M), Z) generated by an element
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X e H\SnM, Z). In particular, a primitive class in //2*(Jac(A/), Z) is primitive in
H2k{SnM, I).

Hence from the map / : S28~2d-xM^SnM^idic{M) we see that E=f*E has
Chern classes ck(E) which are primitive if 2k < 2g — 2d — 1. In particular, cx(E) is
primitive if d <g — 1, and so w^{E) = cx{E) mod 2 is non-zero. Thus the bundle
E, even as a real vector bundle, is non-trivial if d <g - 1.

If d = g — 1 we have a bundle over the Riemann surface M itself whose first
Chern class is

To evaluate on M, recall that M c Jac(M) is the space of special divisors Wx

which has cohomology class 68~1/(g - 1)!. Hence

deg E = - 0s[Jac(M)]/(g - 1)! = -g. (10.6)

As a real rank 6g — 8 bundle on M, E is therefore trivial if and only if v^ = 0,
which from (10.6) occurs only if g is even.

Consider now the map

a: M-+W

taking (A, <I>) to the equivalence class of the flat PSL(2, C) connection

d'A + d"A + <D + <D*.

Since o is an anti-holomorphic involution on (M, J) and a is holomorphic with
respect to this real structure, the connection a{A, <P) for a pair (A, O) which
represent a fixed point of o must possess a reality constraint.

If {A, O) e Mo, that is, 3> = 0, then this is clearly true, for d'A + d"A is then a flat
SO(3) connection. Suppose, however that (A, 4>) eM^-i for d^l; then A
defines a U(l) connection on

V = L@L*A2V.

We define an antilinear homomorphism

by

T(u1}u2) = (u2,ul) (10.7)

where we use the unitary structure on L to identify

L = L*.

Consider <*> e H°(M ; Endo V ® K) of the form

'0
\c 0/

Then
i, u2) = (bux, cu2)

Thus the connection d'A + dA + 3> + <I>* commutes with T. On the projective
bundle P(V), T induces a real structure with real points (u, u) in homogeneous
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coordinates. These real points give an (R/^-bundle over M associated to the flat
PSL(2, R) connection d^ + d^ + <I> + <£*. Thus each of the other components
Mu-i (d > 0) of the fixed point set of o correspond under a to the space of
equivalence classes of flat PSL(2, U) connections

Homfo, PSL(2, R))/PSL(2, U).

There remains the interpretation of the degree 0<d^g — 1. Note however that
the map

(M, U)—>U/U

defines an isomorphism from the UP1 bundle associated to the PSL(2, (R)
connection to the unit vectors in the complex line bundle L2® A2V*. Thus the
Euler class of the UP1 bundle is equal to the degree

deg(L2®A2V*) = 2d-l.

The restriction to odd Euler class here is not fundamental. We have used the
principal bundle P with w2^=0 throughout only because the moduli space of
solutions on the corresponding vector bundle is smooth. If M*> = 0, then there may
exist solutions to the self-duality equations reducible to U(l). These give rise,
however, to vector bundles V = L © L* where L is flat and hence of degree 0.
Thus the solutions corresponding as above to flat PSL(2, IR) connections with
non-zero Euler class correspond to smooth points in the moduli space. Equally,
even in the case where vv^O, we were forced to use SU(2) gauge transforma-
tions instead of SO(3) transformations because of fixed points of the action of
tensoring V by a line bundle L of order 2. If the connection on V is reducible, so
that V = LX®L2, then V = V <8> L implies L2 = Ll®L if Lx and L2 themselves
are not isomorphic, and hence in particular degZ^ = degL2. This again is the
situation of zero Euler class.

It follows that we can define moduli spaces Mk for 0 < k *s 2g — 2 which are
fixed points of the involution induced by o: (A, <£)—> (A, — O) and on which Zis

acts freely. The method of Proposition (10.2) shows that Mk/Zl8 is the total space
of a rank (g — 1 + k) complex vector bundle over the symmetric product
S28~2~kM. On the other hand, by Donaldson's theorem (9.19) this space is
diffeomorphic to the moduli space of flat PSL(2, IR) connections of Euler class
k>0 (these are all irreducible as reducibility would give a section of the
associated RP1 bundle, thus forcing k = 0). We therefore have the following
theorem.

THEOREM (10.8). Let JZX{M) be the fundamental group of a compact Riemann
surface of genus g>l, and let Hom(^r1, PSL(2, U))k denote the space of
homomorphisms of nx to PSL(2, R) whose associated RP1 bundle has Euler class
k. Then the quotient space Hom(^:1, PSL(2, R))/C/PSL(2, IR) is a smooth manifold
of dimension (6g — 6) which is diffeomorphic to a complex vector bundle of rank
(g — 1 + k) over the symmetric product S2g~2~kM.

COROLLARY (10.9) (Milnor and Wood [24, 33]). The Euler class k of any flat
PSL(2, IR) bundle satisfies \k\^2g-2.

Proof By Donaldson's theorem (9.19) the flat connection arises from a
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solution of the self-duality equations invariant under o, and hence in particular
giving a holomorphic vector bundle V = La © L2. By Remark (3.12), the stability
condition for the pair (V, O) gives deg Lx - deg L2 ^ (2g - 2).

COROLLARY (10.10) (Goldman [12]). Ifg-2andk = l, then

, PSL(2, R))7PSL(2, R ) s j | f x U\

Proof. From (10.6), w^E) = 0, so as a real vector bundle, E is trivial.

In the case where k = 2g - 2, this moduli space is simply a vector space of
complex dimension (3g - 3). We consider this component and its special
interpretation in the next section.

11. Teichmiiller space

The main advantage throughout this paper in staying with the group SO(3) was
to simplify the algebra and analysis. However, it also provided a link with the
underlying geometry of M, for we saw in Example (1.5) that the metric of
constant curvature - 4 , compatible with the underlying conformal structure, had a
description in terms of a solution to the self-duality equations. We shall see now
how all metrics of constant negative curvature can equally be described even
though we fix the complex structure of M.

We consider the moduli space Mig^ of solutions to the SO(3) self-duality
equations on a principal bundle P with ^(.P) = 0, which are fixed points of the
involution o and correspond to a line bundle of degree (g -1). In other words,
we have a U(l) connection on

where deg L = g - 1 and a Higgs field

From the proof of (10.2), or stability of (V, <J>) in general, we must have

and b = leH°(M;Hom(A"2, K~*)K), after normalizing with the C* group of
automorphisms of V. With this normalization,

a e H°(M ; Hom(/T*, &)K) = H°(M ; K2)

is a quadratic differential and M^_2 = H°(M ; K2) = C3g"3.
The self-duality equations

F + [3>, <D*] = 0

now become the abelian vortex equations (see [19]),

F1 = 2(l-||fl||> (11.1)

where Fx is the curvature of the U(l) connection on K and co eQ1A(M) is the
Kahler form of the corresponding metric on M. Note that the case where a = 0 is
the metric of constant negative curvature discussed in (1.5).
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THEOREM (11.2). Let M be a compact Riemann surface of genus g>l and
a eH°(M ;K2) a quadratic differential. Let (A, O) be the solution to the SU(2)
self-duality equations on M from Theorem (4.3) for which

V = K* © K 5 and O = ,
M 0

Then
(i) if h is the hermitian form on K-1 determined by the unitary structure

preserved by A, then

+ ^ ) + a eQ°(M ;S2T* <g)C)

is a Riemannian metric on M,
(ii) the Gaussian curvature offiis—A,

(iii) any metric of constant curvature —4 on M is isometric to a metric of this
form for some a e H°(M ; K2).

Proof (i) The bundle S2T* (8) C is

S2(K @K) = K2®KK®K2

with real structure

(a, b,c)^>(c, 6, a).

Clearly ft = a + (h + (ad/h)) + d is real and thus describes a real symmetric form
on TM. We must prove that it is non-degenerate, i.e. that

+ — ) -ad>0,
h I

that is, (h - (ad/h))2 > 0 for all xeM.
In terms of the vortex equations (11.1) we need to show that the norm of the

Higgs field a is everywhere less than 1. This is an important property of both
vortices and monopoles in Euclidean space and we prove it using the same
method as in [19]—the strong maximum principle.

The quadratic differential satisfies d"a = 0 and so, following the development of
(2.1), we have

d"(d'a, a) = (Fa, a) - (d'a, d'a)

or using (11.1),

« ' | | a | | 2 = 4(l-||a||2)||fl||
2co-||d'a||2cW,

that is,
A||a||2 = 4(l- | | f l | |

2) | |a | |2- |Ka| |2, (11.3)

where the Laplacian A is a positive operator.
Using the strong maximum principle [19, VI.3] to X = -A - 4 ||a||2 applied to

1 - ||a||2 we see that ||a|| < 1 for all x, that is,

ad/h2<\,

thus showing that fi is a metric.
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(ii) We may write a = qdz2 in local coordinates and then

Hence u = dz + (q/h) dz is a (1,0) form with respect to k such that

fi{u,u) = h-\ (11.4)

Let $ be the Levi-Civita connection of fi; then %u = u ® 6, for a 1-form 6. Since
the connection is torsion-free, du = 6 AM. But dM = d(dz + (q/h)dz). Therefore,
since q is holomorphic,

dh
h2dz

0 AU = -± — dz Ad2. (11.5)

The connection preserves fi, and hence

d(k(u,u)) = d(h~1) = (d

Hence

- y = 0 + 0. (11.6)

From (11.5),

h h2 dz'
and from (11.6),

1 " hdz

Hence, if 0O>1^O,

so that qq = h2. This however is impossible since a = qdz2 has zeros; thus 00 1 = 0
and

Thus the curvature of ^ on the bundle of (1,0) forms is

F = ddlo=-d"d' logh. (11.8)

Now ft dz rfz is the original metric on M, so

F = d'd" log h = l(h- j ) dz dz. (11.9)

The Kahler form of the metric fi is

6) = h(dz +j-dz) A (dz +j-dz\ = (h -^) dzdz.

Thus from (11.8) and (11.9),
F = 26),

so fi is a metric of constant curvature - 4 .
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(iii) Suppose now that g0 is
 t n e constant-curvature metric compatible with the

complex structure of M, and g another metric with the same constant curvature.
We use the Earle and Eells approach to Teichmuller theory [9] next. Since (M, g)
has negative curvature, it follows from the Eells-Sampson existence theorem that
there is a unique harmonic diffeomorphism

which is homotopic to the identity and minimizes the energy

E = jjd<t>\\2

among all such maps.
Since <j> is harmonic, the (2,0) part of the metric (p*g is holomorphic with

respect to g0, that is,
<j)*g = a + b +d

where a e H°(M, K2) is a quadratic differential and b e Q14(M).
Since 0*g is a metric, b2 — Aad > 0 for all x e M, and hence the root

to the equation h + {ad Ik) = b'v& everywhere positive and thus defines a metric on
M compatible with its complex structure.

Reversing the calculations of (ii) and using the fact that (j>*g has constant
curvature —4, we recover the self-duality equations (11.1).

Consequently every constant-curvature metric on M is isometric to a metric
constructed from a solution to the self-duality equations.

Recall that Teichmuller space 3~ is the space of equivalence classes of metrics
of constant curvature —4 on M, modulo the action of the group of
diffeomorphisms of M homotopic to the identity. Then, as a consequence of
(11.2) we have the following corollary.

COROLLARY (11.10). Teichmuller space is homeomorphic to (R6g~6.

Proof. Take the homeomorphism from H°{M ; K2) = U6g~6 to & given in
Theorem (11.2).

REMARKS. (1) The energy of the harmonic map <p in the theorem is

E{<t>)=\b.
JM'M

Put in terms of the metric h, this is given by

E{<t>)=\
JM

since b = h + (ad/h). However, as a stable pair, we have

• - ( ° a

VI 0
and so \\nh = SM(1+ \\a\\2)coh = E(cf>).
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Thus the function /* = ||O||2,2 which we used in §7 as a Morse function to
compute the Betti numbers of the moduli space restricts to be simply the energy
of the harmonic map.

It is interesting to note that a proof of Tromba that Teichmuller space is a ball
(see [20]) uses E(<f>) as a Morse function with just one critical point.

(2) Our version of Teichmuller space ZT is C3g~3 as a complex manifold and has
a complete Kahler metric with a circle action. None of these properties holds for
the usual complex structure on 2F. This is perhaps not surprising as our
description depends on a base point determined by the given complex structure
on M. Symplectically, however, the two models coincide as we shall see later.

Consider finally the flat SL(2, R) connection determined by a solution to the
self-duality equations under consideration:

d"a = 0,

If M has a metric of constant negative curvature —4, then the universal covering
M is isometric to the upper half-space, and we obtain from the covering
transformations a homomorphism

y: ^!(M)->PSL(2,R) (11.11)

which in fact lifts to SL(2, R). By its very construction, the Euler class of the
corresponding flat bundle is 2g - 2.

We want to show that the flat PSL(2, R) connection a(A, <I>) which cor-
responds to a point in Mig-2 = C3g~3 is the flat connection defined above for the
metric of constant curvature h in Theorem (11.2).

Firstly, consider the upper half-space H with the metric

dzdz
h

of constant curvature - 4 . The linear representation of SL(2, R) is defined in
terms of the differential geometry of H by considering the half order differentials:

(f> = (az + b)dz~*.

The natural action of SL(2, R) on this 2-dimensional space of differentials is the
standard 2-dimensional representation. It is real with respect to the ordinary
conjugation operation. Since (p is linear in Z, another way of describing 0 is as a
section of the bundle of 1-jets

0->K-l®K^J1(K-l)^>K-l-+0 (11.12)

of sections of K~* which is covariant constant with respect to a certain flat
connection. Using the connection of the constant-curvature metric, (11.12) can be
split as a direct sum

and the flat connection written in terms of the Levi-Civita connection.
Thus if <p = (az + b)dz~*, then using the Levi-Civita connection we have
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V10 dz = dz2liy and so

V1>O0 = a dzt + (az + b)Vh0 dz~i

= a dz* — (az + b) — .

Therefore, setting (s l f s2) = (V1>O0, <f>), a section of K* © K~^, we have

V1-°(0,s2) = (0,s1)
and

v ,»S i .L_(« + »)). ^ + /_±. + feL^) i
V 2iy / 2/y V 2iy 2/v2 2*7

= 0.
Thus

V1 '°(J1 ,52) = (0 ,5 1 ) ,

and so s = (slt s2) satisfies

where A is the Levi-Civita connection on K* © K i. Using the real structure
defined by the metric as in (10.7) we see that the flat SL(2, U) connection which
describes the hyperbolic structure on M is just the connection

dA + dA + * + <F
for

~ \ 1 0

This shows in particular that a(A, O) is the correct connection for a =
0 e H°(M ; K2), that is, for the constant-curvature metric compatible with the
conformal structure.

We must now extend this to non-zero a, so assume we are dealing with the
constant-curvature metric

of Theorem (11.2). We saw in the proof that the (1,0) form u = dz + (q/h) dz
satisfied

A o 1 dh
V 1 0 M = - - — udz.

hdz

Consider the local section

s = (u*, M"i) e Q°(Af, & © £-3).
Then

01O / 1 dh , 1 dh _,\ .
\ 2h dz 2h dz I

The canonical map

, K~li ® K)
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is with respect to this basis given by

q

From (11.4), fi(u, u) = h~l, so

is a unitary basis, and 1 is represented by

hhu = h? dz + qh~* dz. (11.15)

Hence the flat connection, relative to this basis, has connection form

\ i - i

., , _ __ „ —r) h*dz+h iqdi
Ah \dz dz H

(11.16)dz + h'iqdz -TT\ — dz dz
4h\dz dz

Now note that, relative to the metric h dz dz, the unitary basis (/i* dzh h~* dz~?)
of K* 0 A" 2 has connection form

and 1 e Hom(#i K~^<8)K) is represented by hi rfz. Moreover,

a = qdz2e Hom(^- i A:? ® /<:)

is represented by h~^qdz. The connection with form (11.16) is thus gauge
equivalent to the connection

V + 3> + 3>* = d'A + d"A + $ + $*

via the transformation #: A"?©A"3-»j^i©%'*, induced by / : A-^A, / ( a ) =
a + a<x/h, where

and >l is the Levi-Civita connection of /i dz dz.
Hence in all cases, the flat SL(2, R) connection d'A + d\ + <]> + <I>* is equivalent

to the canonical connection associated to the metric of constant curvature

REMARK. In [11], Goldman showed that every flat PSL(2, U) connection with
Euler class 2g — 2 is the connection associated to a constant-curvature metric.
This is also a corollary of Donaldson's theorem (9.19), for every such connection
arises from a solution of the self-duality equations and we have just seen how
these give all metrics of constant negative curvature.
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One final aspect is the symplectic structure of Teichmiiller space, as determined
by the Weil-Petersson metric. It was shown by Goldman [11] that this is the
natural symplectic structure on the moduli space of the associated flat PSL(2, U)
connections. That is, we identify the tangent space to the moduli space of flat
connections with the first cohomology of the elliptic complex

Q°(M, ad P) - ^ Q\M, ad P) - ^ Q2(M, ad P)

for a PSL(2, U) connection A on the principal bundle P. The skew form induced
by \MTr{A^\B) for d^-closed representatives A, B e Q}(M ;adP) defines the
symplectic structure.

The corresponding complex symplectic structure on PSL(2, C) connections
induces via the map a the symplectic structure

Tr(A + <i> + <t>*)(i? + W + W*).

However, if the connections are reducible and <i> and W of the form

0̂ 0/

as occurs in Mig-2, then this expression simplifies to

iTr(AB) + Tr(<J>*

which is the Kahler form co1 restricted to the fixed point set of o, jHig-2. Hence
we deduce our final proposition.

PROPOSITION (11.17). Let Mzg-2 be the moduli space of solutions of the SO(3)
self-duality equations on a compact Riemann surface M of genus g > 1, for which
the corresponding stable pair (V, O) is of the form

where a e H°(M ; K2) = C3g"3.
Let (tii be the Kahler form of the natural Kahler metric on Mig-2- Then

{Mig-2, (O\) is symplectically diffeomorphic to Teichmiiller space with the Weil-
Petersson symplectic form.
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